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Abstract

We investigate patients’ utilization responses to the generosity of insurance cov-
erage for expensive medical treatments, exploring insurance mandates for in vitro
fertilization treatment that vary widely in coverage generosity across US states.
We find that more generous coverage increases the incidence of such treatment,
and thus of potentially costly and risky multiple births. More generous coverage
has intensive margin effects, reducing the number of transferred embryos per cy-
cle. But it also has sizeable extensive margin effects, in that more older patients
with lower fertility are drawn into treatment. These extensive margin effects may
impose additional burdens on the healthcare system in terms of both costs and

adverse health outcomes.
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1 Introduction

Healthcare spending in the US has risen rapidly, from 5 percent of GDP in 1960 to
17.9 percent in 2017 (CMMS) 2017)). Lifestyle changes and an aging population have
contributed to increases in chronic illnesses such as cancer, musculoskeletal conditions,
diabetes, and heart disease. These conditions have expensive treatment options, raising
concerns about access to treatment and its overall costs.

Mandated health insurance coverage for expensive medical treatments can increase
accessibility by decreasing patients’ out-of-pocket costs. Generous mandated coverage for
a treatment can have intensive margin effects on existing patients’ utilization behavior
since such coverage makes seeking additional expensive treatments less costly. However,
by expanding access to new patients who might have previously used a cheaper alterna-
tive, mandated coverage can also have extensive margin effects. These extensive margin
effects can further contribute to increases in healthcare costs, particularly if they lead to
changes in the composition of patients seeking treatment such that patients with lower
probabilities of success initiate treatment. Patients’ behavioral responses to the increased
accessibility of expensive treatments are critical to understanding the ramifications of
health policy interventions.

Mandated health insurance coverage for in vitro fertilization (IVF) treatment in the
US provides an interesting case study in this context for the following reasons. First, IVF
resembles other medical treatments like those for heart disease or cancer, which are ex-
pensive and have uncertain outcomes (Shapiro and Recht||2001). Second, patients choose
treatment intensity (through the number of transferred embryos) based on preferences
and expected costs and benefits, and this choice directly affects both success rates and the
likelihood of unintended and costly multiple births. Finally, the generosity of mandated
coverage for IVF treatment varies widely across states and over time. States range from
no coverage, to coverage of infertility treatments excluding IVF, to covering an unlimited
number of cycles, and mandates vary across a number of other dimensions of generosity

as Well This variation across states and time allows the identification of the effects of

!These include things like the definition of infertilty and age restrictions. We provide more in Section



generosity on utilization and outcomes.

In this paper, we empirically investigate how the generosity of mandated IVF coverage
affects patients’ utilization behavior and the composition of those utilizing the treatment.
In the absence of data on the utilization of IVF treatment for all years, we examine
multiple births as a proxy for the intensity of IVF treatmentﬂ More generous coverage
could have two competing effects on the likelihood of multiple births. First, holding the
pool of patients constant, patients face less pressure to conceive in each cycle, and so
might choose to implant fewer embryos (Jain et al., |2002; Reynolds et al.,|2003). This
intensive margin effect would decrease the incidence of multiple births Second, generous
mandates expand access to new patients who might not have pursued treatment in the
absence of insurance coverage. This extensive margin effect could lead to an increase
overall in the incidence of multiple births, but might not change the number of embryos
being transferred per woman or per cycle. However, these extensive margin effects could
also change the composition of patients seeking treatment, such that patients with a lower
probability of success initiate treatment, requiring an increase in the number of embryos
transferred per woman or per cycleﬂ The overall effect of more generous coverage for
IVF treatment on the incidence of multiple births is therefore ambiguous. These intensive
versus extensive margin effects of IVF coverage are discussed by |Bundorf et al.| (2007)
and Hamilton et al.| (2018), but not in the context of differing generosity levels within the
set of states which mandate coverage.

We first develop a conceptual framework to show how patients’ differential fertility
together with the generosity of their insurance coverage leads to differences in utilization
and treatment intensity. We then use a generalized synthetic control (GSC) model to
estimate the effects of IVF coverage generosity on multiple births, using Detail Natality

Data on all births in the US between 1975 and 2014 and exploiting variation in generosity
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2See Sectionfor a discussion of the weaknesses of this measure.

3Note that we are thinking of the intensive margin here in terms of intensity of the cycle. Alternatively,
one could consider intensity of treatments within a given patient over time, which could show an increase
in multiple births if a patient with a failed first attempt then re-enters the pool.

4However, if more generous coverage leads some patients to skip cheaper alternatives to IVF (for
example, ovulation-boosting drugs), then the extensive margin effects could lead to a reduction in the
incidence of multiple births.



across states and over time. Then, to shed additional light on intensive versus extensive
margin effects, we turn to fertility clinic data from the Society for Assisted Reproductive
Technologies (SART) and examine how more generous coverage affects the composition of
patients, the number of initiated IVF cycles, and the number of embryos transferred per
cycle. Finally, using data from the National Data Archive on Child Abuse and Neglect
(NDACAN), we examine the effects of IVF generosity on adoptions of children aged 0-6,
as such adoptions could be considered in some circumstances a substitute for conceiving
through IVF.

Our empirical analysis has three main findings. First, we find that more generous
coverage of IVF treatment increases the incidence of multiple births. After controlling
for state-level characteristics, we find that multiple births are 26.9% higher in states
with the most generous coverage relative to states with no mandated coverage. Second,
we find evidence of intensive margin effects of generosity for all women, where states
with the most generous coverage have fewer embryos transferred per cycle. Finally, we
find that the states with the most generous coverage also see significant increases in the
share of cycles performed on older women with lower fertility, as new patients are drawn
into treatment. These compositional extensive effects dominate the decrease in embryos
transferred per cycle, leading to overall increases in multiple births.

Our findings suggest that extensive margin effects are important to understanding
the policy implications of increased health insurance generosity, consistent with previous
work on the role played by incentives in healthcare utilization. |Chernew et al.| (2000)
suggest that in an optimal insurance plan patients should pay higher out-of-pocket costs
for more expensive treatment. |[Einav et al.|(2016]) (in the case of breast cancer treatments)
and Hamilton et al.| (2018) (in the case of infertility treatments) both suggest that top-up

pricing for more aggressive treatments could be optimal.



2 Background

2.1 IVF treatment

Infertility, defined as the inability to conceive or carry a pregnancy to full term, is rec-
ognized as a disease by both the American Society for Reproductive Medicine and the
World Health Organization. Treatment for infertility usually begins with medical tests
and physician advice, and is often followed by the woman’s use of one of several drugs
to stimulate egg production. If these less expensive treatment methods are not success-
ful, then assisted reproductive technologies such as in vitro fertilization (IVF) are often
recommended. Success rates of a single IVF cycle are as low as 20 percent (CDC;|2015),
and many patients require more than one cycle of treatment to achieve a live birth. The
costs of one cycle of IVF can be as high as 46 percent of the average US family’s annual
disposable income (Kissin et al.,|2016).

In IVF, eggs are extracted, a sperm sample is obtained, and eggs and sperm are
then manually combined. The fertilized eggs, called embryos, are then transferred into
the woman’s uterus The Practice Committee of the American Society of Reproductive
Medicine provides guidelines on the maximum number of embryos to transfer per cycle
(Klitzman), 2016)@ However, given the high costs and low success rates of IVF, patients
often wish to exceed these guidelines to improve their odds of success, and in doing
so increase the likelihood of multiple births. Although multiple births are more costly
and risky for both mothers and infants, most monetary costs are covered by insurance,

and many patients with fertility problems view multiple births as a desirable outcome

(Gleicher and Barad, [2009),

2.2 Mandated IVF coverage in health insurance plans

Due in part to concerns about the high cost of IVF treatment, between 1978 and 2014

15 US states passed legislation pertaining to coverage of infertility treatment in employer

5The first infant conceived using an IVF treatment was born in 1978 in the UK.
6Currently, recommendations are for 1-2 embryos for women under the age of 35 and increase with
age.



provided private health insurance plans In these mandate to cover states, private health
insurance companies are required to cover infertility treatment in all of their policies
The level of coverage in mandate to cover states is quite heterogeneous. During
our sample period, Montana, New York, Ohio, and West Virginia mandate coverage for
some types of infertility treatment, but do not require coverage of IVF. Arkansas and
Hawaii mandate coverage for only one cycle of IVF; Connecticut mandates up to two;
Rhode Island and Maryland mandate up to three; Illinois and New Jersey mandate up
to four; and Massachusetts has no limitﬂ Mandates also vary along a number of other
dimensions, including (but not limited to) age restrictions, coverage of unmarried women,
minimum years of infertility to qualify for coverage, and whether mandates apply to health
maintenance organizations (HMOs). However, as shown in Table |1 these dimensions of
generosity are highly correlated with the mandated number of cycles, so we treat the
number of cycles as a proxy for the overall generosity level of mandated coverage. There
are 35 states which never legislated policies to mandate coverage for infertility treatments.

These never mandate states serve as a control group in our analysis.

2.3 Previous work

Our paper is related to the literature investigating the effects of mandated coverage for
infertility treatment on a variety of outcomes including utilization of treatment, infant
and child health outcomes, fertility, age at first birth, time of marriage, women’s choice
to pursue professional careers, and labor supply over the life cycle (Schmidt, 2005} Bitler
and Schmidt||2006;|Bundorf et al., 2007; |Schmidt} 2007} Bitler, 2008; Bitler and Schmidt),
2012} Buckles, |2013; |Abramowitz, 2014; |Machado and Sanz-de Galdeano, 2015} Kroeger
and La Mattina, 2017; | Abramowitz| 2017} |Gershoni and Low, |2020a/b). Most of these

studies use either state-year or state-year-age variation in mandated IVF coverage in (re-

"Under the 1974 Employer Retirement Income Security Act (ERISA), self-insured firms are exempt
from these mandates.

8In mandate to offer states, health insurance companies are required to offer plans that would cover
infertility treatment, but are not required to include this coverage in all policies. We exclude these states
(California, Texas, and Louisiana) from our empirical analysis.

9Since the end of our sample period in 2014, three additional states have mandated IVF coverage:
Utah, Delaware, and New York. We do not include these mandates in our analysis.



spectively) difference-in-difference (DD) and difference-in-difference-in-differences (DDD)
frameworks

The studies that relate most closely to our work are those studies that examine the
effects of the state mandates on multiple birthsE-I Studies that examine the effects of
mandated coverage tend to find that it increases multiple births. Buckles (2013) finds
that “strong” mandate to cover laws (those that include coverage for IVF and apply to
most private firms) have a small but statistically insignificant impact on the incidence of
multiple births. [Bitler|(2008) shows that the mandates are associated with higher rates of
multiple births and worse health outcomes in terms of birth weight and gestation. Bundorf
et al.|(2007) show that the mandates are associated with a significant increase in multiple
births per delivery. However, studies that use clinic-level data find that treated patients
with health insurance plans covering IVF treatment transfer fewer embryos compared to
those with no insurance coverage (Jain et al.| 2002} |[Reynolds et al.| |2003; [Henne and
Bundorf] [2008; Hamilton and McManus, [2012)). Much of this previous work ignores the

differences in generosity within the set of states that mandate coverage for IVF.

2.4 Our contribution

Our contribution to this literature is twofold. First, we study how patient utilization
responds to the generosity of mandated IVF coverage. This is important for understand-
ing the cost implications, since more generous coverage could affect utilization on both
the intensive and extensive margins, and therefore could alter the composition of those
seeking treatment. The second contribution is methodological. The DD approach used
in much of the previous literature relies on the assumption that trends in the treatment
(mandate to cover) and control (never mandate) states would have evolved in the same
way in the absence of the mandates. While previous papers all address this parallel trends

assumption when comparing all mandate states to nonmandate states, it might be less

190ne exception is [Machado and Sanz-de Galdeano| (2015), which uses a synthetic control model to
estimate the effects of mandated IVF coverage on the timing of first births and on women'’s total fertility
rates.

HBhalotra et al.|(2020) find that a Swedish single embryo transfer policy reduced multiple births and
improved maternal and infant health.



plausible in the context of differences in generosity within the set of states that choose
to mandate coverage of IVF. Given this concern, we use a GSC model, described in Sec-
tion to generate causal estimates. However, we also estimate DD (exploiting variation
across states and time) and DDD (exploiting variation across states, time and women’s

age) models as robustness tests, and for easier comparability to the previous literature.

3 Conceptual framework

In this section, we build upon Hamilton and McManus| (2012) to provide a conceptual
framework to illustrate how the generosity of IVF coverage in a patient’s insurance plan
and her underlying fertility affect her utilization behavior.

Many factors affect a patient’s decision to initiate IVF treatment, as well as her choice
of treatment intensity. First, as noted previously, per-cycle costs of treatment are quite
high. In addition, most patients need more than one cycle of treatment to achieve in
a live birth. Therefore, patients face strong financial incentives to minimize their total
treatment costs by conceiving in fewer cycles. As a result, they may transfer more embryos
in a given cycle in order to improve their chances of success, despite the fact that this also
increases the likelihood of multiple births. Health insurance plans with more generous
IVF coverage reduce the out-of-pocket costs of the treatment and potentially reduce the
pressure to conceive in fewer cycles. As a result, patients with more covered cycles might
decide to transfer fewer embryos in a given cycle, subsequently reducing the probability
of multiple births.

Patients get utility from consumption («) and having children (b). Each patient is
endowed with fixed income I. A patient makes a decision d from the options of natural
conception (/V), initiating infertility treatment (/V F') and adopting an infant (A) to

maximize their utility defined as:

ephax U(a,b) = o+ v4(b), (1)

where v,4(.) denotes the utility associated with choice d, and b denotes the number of



infants resulting from choice d. We assume that, conditional on a successful birth, patients
prefer fewer infants resulting from a delivery. We therefore assume that vg(.) > 0 and
vy(.) < 0 for all choice of d. All patients prefer to have their own biological infant with a
natural conception where vy (.) > vy p(.) and vy (.) > va(.).

Patients’ consumption («) is their income net of the cost of their choice d, defined as
a = I —pg where py is the cost associated with decision d. The cost of natural conception
pn is assumed to be zero. The cost of adoption is also assumed to be fixed at py > 0.
The costs of IVF treatment consist of two parts; the fixed costs of initiating a treatment
(n > 0) and the per cycle costs which might be covered by an insurance plan (A > 0)
which is defined as pyyr =n + A

The more embryos transferred, the higher the probability of conceiving an infant, and
the greater the likelihood of a multiple birth. We assume that the number of infants
resulting from a cycle of treatment is b = kx, where k € [1,k] is the number of trans-
ferred embryos and k is a fixed parameter denoting the probability of conceiving multiples
naturally. k& denotes the maximum number of implanted embryos recommended by pro-
fessional guidelines. We also assume that the number of transferred embryos (k) is a
function of a patient’s fertility f € [F, F] and the number of the cycles covered in their
insurance plan (7) and defined as k = g(f,7). F and F denote the fertility of patients
with respectively low and high chances of natural conception. Patients with lower fertility
face incentives to transfer more embryos (g¢(.) < 0), and patients with more covered cy-
cles transfer fewer embryos (g.(.) < 0). Patients’ fertility f and their insurance coverage
for IVF treatment 7 are the only sources of heterogeneity in our model. For simplicity
and with no loss of generality, we assume k = %—“

We assume that the per-cycle probability of conceiving an infant depends on the
number of transferred embryos defined as ¢(k), where more transferred embryos improve
the chances of success (¢x(.) > 0). The probability of a natural conception is denoted by
v, and we assume ¢(k) = k.

Figure (1| illustrates patients’ choice by their fertility status f. Patients with higher

| =

[ € (5, F] are more likely to naturally conceive an infant. Patients with lower f € [7—%, %]



would use IVF treatment. When the number of covered cycles (7) increases, more patients
with lower fertility would choose initiating IVF treatment over adopting a child. These
patients would increase their chances of conceiving an infant by implanting more embryos
which might result in a multiple birth. Patients with f € [F, 7%) are predicted to opt
for adoption rather than to initiate IVF treatment.

This framework is static, and the true optimization problem faced by a patient is
clearly dynamic in nature. However, if we assume that r denotes the number of remaining

covered cycles, then we can think of this model as representing a given stage of a patient’s

dynamic decision making process.

4 Data

We use several data sources for our empirical analysis. First, we use birth certificate data
from the National Center for Health Statistics Detail Natality Files. The data comprise
records of live births in the US from 1975 to 2014, and include parental information such
as mother’s age, education, and race, father’s race, parental marital status, and state of
residence; and infant information such as sex, birth order, and plurality (single or multiple
birth). Our study sample includes the 12 mandate to cover states (treatment group) and
the 35 never mandate states (control group). We aggregate the data into state-year cells
for our empirical analysis

Our primary outcome variable is the multiple birth rate defined as the number of
multiple births (i.e. not singletons) per hundred live births Multiple births are a
useful proxy for the aggressiveness of treatment. More than one-third of twins and more
than three-quarters of triplets and higher order multiples in the US in 2011 resulted from

conception assisted by infertility treatments (Kulkarni et al.| |2013). They can also be

12We use the NBER data files. Public use data include mother’s state of residence only through
2004, so we use restricted access data files from 2005-2014. We impute missing values in the state-year
aggregated data by setting them to the average of the corresponding variable in the years before and
after.

3There is one record for each infant in the data file (e.g., there are three records for a triplet birth).
The number of infants therefore over-represents the incidence of multiple births. To deal with this issue
we follow Buckles| (2013) and construct a weight by dividing 1 by the plurality of each infant (i.e. the
weight of each infant in a triplet birth is set as 1/3). We use these weights to convert the unit of analysis
from infant to birth.



costly and risky for both mothers and infants However, one caveat of this approach is
that in the birth certificate data, we have no way of knowing whether the multiple births
are naturally occurring, or due to IVF, or due to other infertility treatments besides
IVF. Our multiple birth indicator also cannot differentiate between a twin birth and
a quadruplet birth, even though these have very different cost implications, so we also
examine the effects of generosity on the number of infants per thousand births.

Second, we use the March Annual Social and Economic Supplement of the Current
Population Survey (CPS) to create control variables at the state-year level, including the
population percentage of women of childbearing age, the female labor force participation
rate and real per capita income To account for the share of women who will be affected
by the mandates, we control for the percentage of working age individuals with private
health insurance, as well as the percentage of working age individuals in large firms
(defined as +500 employees) as a proxy for the share of workers in self-insured firms and
therefore not subject to the mandates under ERISA@

Third, we use clinic-level data collected from 1996 to 2010 by SART to study patients’
utilization of IVF treatment The data include information on the number of cycles
initiated in each clinic, the share of cycles performed on women 35 and older, and the
average number of embryos transferred by mothers’ age.

Finally, we use data on child adoptions from the National Data Archive on Child
Abuse and Neglect (NDACAN) from 2000 to 2014 We create a variable to represent
the number of young adopted children (ages 0-6) per one thousand live births in that state
and year. Our data do not include private adoptions (either domestic or international).

However, our analyses of the effects of the insurance mandates will be biased only if the

14The average cost of a singleton birth was $27,000 in 2012, while twin and triplet births cost $115,000
and $435,000, respectively (Lemos et al.||2013) The risks of multiple births to mothers include high blood
pressure, gestational diabetes and a higher rate of caesarean sections. The risks to infants include low
birth weight, prematurity and sometimes long-term disabilities like autism and cerebral palsy (Hoffman
and Reindollar| 2002} Fritz| [2002{ [Martin and Park}|1999; Reynolds et al.}|2003]).

I5We use the NBER files, and convert all dollar values to 2007 dollars using the Consumer Price Index.

161t has been shown that large firms are more likely to self-insure (Gabel et al.| 2003/ [Park, 2000).

I7"SART is a voluntary reporting system and does not regulate clinic practices. About 10% of clinics do
not report data. We exclude frozen and donor cycles, since only fresh and non-donor cycles are covered
by mandates in many states.

18This is a federally mandated data collection system for all children in foster care and on children
adopted under the auspices of the state public child welfare agency.
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generosity of mandated IVF coverage differentially affects private adoptions versus those

through the state welfare system.

5 Identification strategy

States mandated insurance coverage of IVF at different times. We could follow the
previous literature and use this state- and time-level variation to estimate the effects
of the generosity of mandated coverage on the incidence of multiple births using a DD
framework. However, interpretation of estimated effects as causal requires that in the
absence of treatment, the incidence of multiple births in the treated and control states
would have followed parallel paths over time. Figure [3| plots trends in the incidence of
multiple births by the generosity level of the mandated coverage. These figures suggest
that the parallel trend assumption might be violated in our context

In order to estimate causal effects when the parallel trends assumption is likely to be

violated, we use a GSC framework (Xu}|2017). We estimate a model of the form:

Yit = 0uDir + BX], + N, fo + €, (2)

where ¢ and ¢ respectively denote state and time. y;; denotes the outcome variable in
state i at year . Our main outcome variables are the multiple birth rate (the number
of multiple births per hundred live births) and the number of infants per thousand live
births. D;; is a dummy variable which is coded as 1 for treated state ¢ in years following
the mandated coverage. We estimate the model separately for each generosity level
indicated in Table We follow |Schmidt| (2007)) and allow mandated coverage to affect
multiple births with a two year delay. This effective mandated coverage year accounts for
two factors: first, infertility treatments may not lead immediately to a conception, and
second, a successful conception will not translate into a birth until nine months later.
The vector Xj; is a set of time-varying state-level characteristics which includes moth-

ers’ age, marital status, and education, mothers’ and fathers’ race, infant’s sex, birth

19Gimilar figures for the number of infants per one thousand live births are available from the authors
by request.
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weight, and five-minute APGAR score. We also include the state-level socioeconomic
characteristics from the CPS discussed above.

A; is a r x 1 vector of state-specific intercepts. f; is a r x 1 vector of time-varying
coefficients which captures unobserved common factors. 7 is the estimated number of
confounding factors. The factor component of the model, X.f; covers a wide range of
unobserved heterogeneity. It absorbs all unobserved confounders that can be decomposed
into a state-year multiplicative form (i.e. U;; = a;xb;), but it does not capture unobserved
confounders that are independent across states. €; captures any remaining unobserved
components that affect the incidence of multiple births.

The coefficients of interest are d;;. The average treatment effect on the treated (ATT)
at time ¢ is mt = m > icTreated Oit, Where Treated denotes treated states. We use
data from a 15-year window around the effective mandated coverage year (15 pre- and 15
post-treatment periods)@ We estimate standard errors with a parametric bootstrapping
procedure using 2,000 re-sampling draws of the residuals (Xu,|2017).

A generalization of the conventional fixed effects model, the GSC approach uses a
linear interactive fixed effects model to impute the treated counterfactuals using the
information from the treatment group in pre-treatment periods and the control group, in
the spirit of the weighting scheme of the original synthetic control method (Abadie et al.,
2010) The number of confounding factors (r above) is chosen within a data-driven
cross-validation procedure. A more flexible interactive fixed effect (i.e. a larger r) covers
a wider range of unobserved heterogeneity. We provide more details on the estimation
strategy of a GSC framework in Appendix [A]

The main advantage of using a GSC framework instead of a DD framework is that a

GSC framework provides causal estimates when the parallel trends assumption is likely

20Exceptions are Connecticut (mandate enacted in 2005) with an 8-year post-treatment period and
Hawaii (1987) and Arkansas (1987) with 10-year pre-treatment periods, because the 15-year window for
these states falls outside our data availability period of 1975-2014.

2IThe GSC framework has several advantages relative to the original synthetic control developed by
Abadie et al.|(2010). First, it allows for more than one treated state with variable treatment periods.
Second, the GSC framework provides estimates of standard errors and confidence intervals, making
inference more reliable. Third, it provides a data-driven procedure to select the right number of factors
in an interacted fixed effect model and reduces the risk of over-fitting. This approach furthermore enables
us to take advantage of the long pre-treatment panel to decrease the bias of the estimated effects. See
(Abadie} |2019) for a review of recent synthetic control methods.
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to be violated A GSC framework also allows for more flexible state-year interactions
(i.e., state specific time trends) to absorb a wider range of unobserved heterogeneity than
a DD model allows. A GSC framework allows the data to tell us which model is more
appropriate by estimation of r. For specific estimated values of r, a GSC framework

reduces to a DD framework[Z]

6 Results

6.1 Descriptive evidence

Tablepresents summary statistics from birth certificate data from 1975-2014, presented
in ten year intervals and broken out by IVF mandate status. Mothers in more recent
years are on average older, more educated, and less likely to be married. Multiple births
per hundred live births and the number of infants per thousand live births are also higher
in more recent years, reflecting an increase in infertility treatments as well as an increase
in the share of older mothers (older women are more likely to have multiple births even
in the absence of infertility treatment). The incidence of multiple births in states with
mandated coverage is higher than that in the never mandate states, and this gap is
widening over time.

Figure [2| plots the multiple birth rate by women’s age. The incidence of multiple
births increases by women’s age, and this pattern is stronger in recent decades. The
age of 35 is considered to be a turning point in women’s fertility: one third of women
older than 35 experience fertility problems (CDCl |2015). Therefore, we present all of
our empirical analyses first for all women, then separately by women 35 and older versus
women younger than 35 years.

Figure [3| plots trends in the number of multiple births per hundred live births by

generosity level of mandated IVF coverage, first for all women, then separately for older

22 A DDD framework can also be used for estimating causal effects when the parallel trends assumption
is likely to be violated, since it adds a third dimension (in our case, mother’s age in addition to state
and year). We estimate DDD models as a robustness check.

ZFor instance, for r = 2, if we set A, = (1,;) and f; = (74, 1) then M. f; = a; + 7;. In this case, the
GSC model is reduced to the conventional DD model with state and time fixed effects.
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and younger women. Three main patterns emerge. First, the incidence of multiple births
is increasing across all states over our sample period. Second, more generous coverage
is associated with more rapid growth in the incidence of multiple births. Third, the
association between coverage generosity and the incidence of multiple births is stronger

for older women than for younger women.

6.2 Estimation results from the GSC model

Plots presenting the estimated counterfactual and estimated effects on the treated (man-
date to cover) states for each level of coverage for all women are presented in Figure
The plots suggest that the GSC estimator works quite well in imputing counterfactuals
for the treated states to match the control group in the pre-treatment periods Table
presents the estimated effects of the generosity level of mandated coverage on the number
of multiple births per hundred live births, using the GSC framework specified in Equa-
tion . The first set of columns presents the estimated effects for all women. Panel A
presents the estimates using one indicator that pools all mandate to cover states, regard-
less of generosity level. The first column shows that any mandated coverage increases
the multiple birth rate by 0.10 percentage points relative to the never mandated states,
approximately an 8.84% increase from a mean value of 1.13. The second column adds
covariates to the model, which reduces the magnitude of the estimated effect to a 0.05
percentage point increase in the multiple birth rate (or a 4.42% increase).

Panels B through G show the estimated effects broken out by the level of generosity.
Panel B shows that coverage for less invasive infertility treatment only (level 0) has no
effect on the multiple birth rate relative to states that never enact mandates. This finding
is relatively consistent across our results. Panels C through G show that, in general,
states with more generous IVF coverage exhibit larger increases in multiple birth rates.
Estimated effects with covariates range from a 0.08 percentage point increase (8.33%) in

states with level 1 coverage to a 0.28 percentage point increase (26.92%) in states with

24Figure |5| and Figure |§| present the corresponding estimates respectively for women 35 and older
versus women below 35 years.

25Gimilar figures for the number of infants per one thousand births are available from the authors by
request.
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level 5 coverage.

The remaining columns of Table [5| present the estimates for women 35 and older
versus younger than 35. After controlling for covariates, the estimated effects for women
35 and older tend to be larger than the effects for younger women, especially at higher
levels of coverage. For older women, the estimated effects after controlling for state-level
characteristics vary from -0.24 percentage points (-17.26%) in states with level 1 coverage
to 0.56 percentage points (44.09%) in states with level 5 coverage. The estimated effects
for younger women are much smaller and range from 0.07 percentage points (7.52%) in
level 1 states to 0.21 percentage points (20.59%) in level 5 states. These findings are
consistent with our conceptual framework presented in Section

While the multiple birth rate simply tells us whether the birth included more than
one infant, our alternative outcome measure, the number of infants per thousand births,
allows, for example, triplets to count more than twins. Table @ presents the effects of
the generosity level of mandated coverage on the number of infants per thousand live
births. The overall findings are quite consistent with those from the multiple birth rate
specification. The estimated effect of any mandated coverage (Panel A) after controlling
for covariates is 0.64 infant (or, a 5.51% increase in the number of infants per thousand live
births). The estimated effects by the generosity level of coverage after including covariates
range from 0.91 infant (9.37%) in states with level 1 coverage to 2.92 infants (27.68%) in
states with level 5 coverage, and again, the effects are larger for older Women

Overall, our estimates from the GSC framework show that mandated coverage causes
an increase in the incidence of multiple births, that states with more generous coverage
experience larger estimated effects, and that effects are larger for women over 35.

As a robustness check, and to facilitate comparison with the previous literature, we

26There are other dimensions besides age that are strongly associated with infertility and IVF coverage,
including education, marital status, and race (Bitler and Schmidt||2006). College educated women face
incentives to postpone childbearing and invest in their professional careers, and are also more likely to
work in jobs that offer private health insurance. Married women struggling with fertility seek infertility
treatment and especially IVF more often than unmarried women, and some mandated coverage explicitly
excludes unmarried women. Although white women are less likely to experience infertility than black
women, they are more likely to seek infertility treatment. We have estimated the results from Tables
and Table@ separately along these dimensions, and results are largely consistent with the patterns found
in the previous literature. Results are available from authors on request.
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also estimate the effects of the mandated coverage on the incidence of multiple birth
using DD (exploiting variation across states and over time) and DDD (exploiting variation
across states, over time, and by age cohort) frameworks. Appendix Table presents the
estimated effects from these specifications for multiple births per hundred live births, and
and Appendix Tablepresents similar results for the number of infants per thousand
live births. The overall story is the same as our findings from the GSC framework; more
generous coverage is associated with an increase in the incidence of multiple births, and

this association is stronger for older women.

7 Intensive and extensive margin effects

Our GSC results show that more generous coverage leads to an increase in the incidence
of multiple births. This is in spite of speculation that more generous coverage might
reduce multiple births by reducing the incentives to transfer more embryos per cycle.
If mandated coverage has only intensive margin effects on patients’ utilization behavior,
then we would expect more generous coverage to decrease the incidence of multiple births.
However, more generous IVF coverage could also have extensive margin effects, as new
patients with lower probabilities of success seek treatment.

To disentangle the intensive and extensive margin effects of the generosity of mandated
coverage on the incidence of multiple births, we use two additional datasets. First,
we investigate patients’ utilization behavior using fertility clinic-level data. Second, we
investigate child adoption as the main alternative to a live birth. However, since both of
these data sets begin after several of the mandates are passed, these analyses should be

thought of as descriptive and not as providing causal estimates.

7.1 Evidence from IVF clinics

We turn to SART clinic-level data from 1996 to 2010 to directly investigate whether
the generosity of mandated coverage affects IVF utilization. Table [3| presents summary

statistics, and Figure[7]plots trends in our outcomes by coverage generosity. The average

16



number of embryos is decreasing over our sample period in both treatment and control
states, likely due in part to changes in medical recommendations More embryos are
transferred per cycle for women 35 and older than for younger women. The share of
cycles performed on women 35 and older is 10 percentage points higher in recent years
for treatment states relative to control states.

We use a linear mixed effects (ME) model to investigate the relationship between
coverage generosity and patients’ utilization behavior. Our ME model exploits random
variation between clinics within states in addition to the variation across states. We
are unable to use GSC or DD models here, because the mandated coverage date for 5
out of 8 states falls before the availability of SART data. Including clinic or state fixed
effects would absorb all the variation[®] An ME model utilizes the hierarchical structure
of the data where the observations (i.e. clinics) are nested in groups with particular
characteristics (i.e. states with various levels of coverage). We estimate a model specified
as:

Vist = o + g Levely + aa X, + N\ + vy + wys + €t (3)

where 7, s and t respectively denote clinic, state, and year. vy, denotes the outcome
variable in clinic ¢ in state s at year ¢. Our outcome variables include the total number of
cycles, the share of cycles performed on women 35 and older, and the average number of
transferred embryos per cycle. Levely, is an indicator for the generosity level of mandated
coverage in state s at year ¢, with never mandated states as the control group. The
vector X; includes the same time-varying state characteristics used in our GSC analysis.
¢ denotes year fixed effects, which pick up any factors changing over time that are
common across states and clinics (e.g., advances in technology at the national level). ~;
and v, respectively denote clinic and state random effects. ¢;; captures any remaining

unobserved factors affecting the outcome variable. The parameter of interest is a1, which

2TA major change to SART guidelines occurred in 2004. We estimated an event study model, and
found that this change was associated with a reduction in the number of embryos transferred for both
younger and older patients. However, the estimated effects did not vary by coverage generosity. Results
are available from authors on request.

28ME models are extensively used in education research where the independence assumption for causal
inference in a linear model is violated; for instance, in studies where students and teachers are nested in
classrooms, schools and districts (Goldstein}|1999).
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captures the relationship between the the generosity level of mandated coverage and our
outcome variables.

Table presents the estimated effects for all women as well as results broken out by
age. These results suggest the following: First, more generous coverage is associated with
a significant increase in the share of cycles initiated by older women, which is suggestive
of extensive margin effects on the composition of the pool of patients. Given that older
women transfer more embryos per cycle, this would imply an increase in multiple births.
Second, the relationship between the generosity of mandate coverage and the average
number of transferred embryos per cycle reflects intensive margin effects: more generous
coverage is associated with fewer transferred embryos for both older and younger women,
with stronger effects for younger women. This would imply a decrease in multiple births.
The fact that our GSC results using birth data show an overall increase in multiple births

suggests that the compositional or extensive margin effect must dominate.

7.2 Evidence from child adoption

Women who are not able to naturally conceive an infant have two alternative pathways
to motherhood: using IVF treatment or adopting a child. There is significant overlap
between these two options. More than half of the individuals who received infertility
treatment had also considered adoption (Chandra et al.; 2005). |Gumus and Lee| (2012)
show that one-third of individuals who consider adoption have also sought IVF treatment.
Both of these options have pros and cons. Despite technological advances, IVF treatment
is expensive and has a low probability of success. Adopting a child is also expensive,
uncertain, and can take a long time. Furthermore, some individuals might prefer to have
their own biological child. If more generous mandated coverage for IVF induces more
older women to initiate IVF, we would expect that effect to be accompanied by a decrease
in adoptions.

Previous work has looked at the relationship between IVF treatment and adoption.
Gumus and Lee| (2012) find that higher adoption rates at the state-year level are asso-

ciated with a lower number of IVF cycles performed. |Cohen and Chen|(2010) find that
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mandated IVF coverage did not affect child adoption in mandated states relative to never
mandated states. However, the effects of mandated coverage on adoption could be quite
heterogeneous depending on the generosity of coverage and the age of the mother.

We use NDACAN's child adoption data for children aged 0-6 years from 1995 to 2014
to investigate the relationship between the generosity level of mandated IVF coverage
and child adoption@ Table presents descriptive statistics for these data. In the early
years of our sample period, the adoption rate was higher in our treatment states than
in the control states. However, by the later half of our time period, this pattern had
reversed itself, so that the never-mandated states saw two more adopted children per
one thousand live births than did the treatment states. Figure |8| plots the number of
adopted children per thousand newborn infants by the age of the adoptive mother. This
figure provides two main insights. First, more generous coverage is associated with lower
rates of child adoption. Second, adoption rates are higher for older women than younger
women.

To examine the effects of generosity of IVF coverage on child adoption, we estimate an
ME model similar to Equation , including time fixed effects and state random effects
Tablepresents the estimated effects, first for all women and then broken out by the age
of the mother. Our results suggest a negative association between the generosity level of
mandated coverage and the number of adopted children per thousand newborn infants
that is much stronger for older women than for their younger counterparts.

Our analyses of these three different data sources (birth certificate data, data from IVF
clinics, and adoption data) have three main takeaways. First, more generous IVF coverage
increases the incidence of multiple births. Second, the intensive margin effects of more
generous coverage (i.e. the decrease in the number of transferred embryos) are found for
all women, but are stronger for younger patients than older patients. Third, the extensive
margin effects of more generous coverage show a compositional change, where the share of

cycles performed on women over 35 increases with coverage generosity. This is mirrored

29We focus on these ages since younger children might be closer substitutes for newborn infants.
30Gimilar to our analysis of SART data, we are unable to use GSC or DD models because the mandated
coverage date for 5 out of 8 mandated states falls before the availability of the adoption data.
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by a decrease in child adoption to older women in states with more generous coverage.
These findings suggest that the extensive margin effects of more generous coverage are
stronger than the intensive margin effects on the number of embryos transferred per cycle,

resulting in the overall increase in risky and costly multiple births.

8 Conclusion and policy implications

How do increases in the accessibility of expensive medical treatments affect patients’
utilization behavior, and what are the resulting implications for healthcare costs? We
explore the generosity of state-level mandated coverage for IVF treatment in the US
and find that more generous coverage significantly increases the incidence of risky and
expensive multiple births. This is true despite the fact that more generous coverage
has been proposed as a way to decrease the incidence of multiple births by affecting
patients’ utilization behavior along the intensive margin, i.e. by encouraging less intensive
treatment through the transfer of fewer embryos per cycle. We find that while more
generous coverage has these predicted intensive margin effects for all women (and stronger
effects for younger women), it also has sizeable extensive margin effects, increasing the
share of cycles performed on older women. Our analysis highlights the importance of
extensive margin effects of increased accessibility of expensive medical treatment through
insurance coverage.

Our results are consistent with work by Bitler and Carpenter| (2016), who show that
mandated insurance coverage for mammography significantly increased mammography
screenings and subsequently increased detection of pre-cancers. However, they also find
that a large share of the increased screenings resulted from mandates that were not
consistent with recent American Cancer Society recommendations. Our findings are
also related to suggestions by |Hamilton et al.|(2018) (in the context of IVF) and Einav
et al.| (2016) (in the context of breast cancer treatment) for either regulating/limiting
the aggressiveness of treatments; or for imposing a “top-up” price for more expensive

treatments; or some combination of the two. In the IVF context, Hamilton et al.| (2018)
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argue that a “value-based” policy in which insurance plans cover single embryo cycles
but patients must pay a top-up cost for transferring additional embryos could maximize
welfare. Ignoring compositional extensive margin effects could mean that increased access

without regulation might impose additional burdens on the healthcare system.
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Table 5: Effects of IVF coverage generosity level on multiple births per hundred live
births, GSC model

All women Women 35 and older =~ Women under 35  Number of state-year cells
1) (2) (3) 4) (5) (6)

A. All levels 0.10***  0.05***  0.18*** 0.12** 0.05*** 0.05 1,923
(0.01) (0.01) (0.06) (0.06) (0.01) (0.02)

Pre-mandate mean 1.13 1.13 1.55 1.55 1,09 1.09
(0.30) (0.30) (0.57) (0.57) (0.23) (0.23)

B. Level 0 0.02 0.03 -0.22 0.01 0.05 0.02 1,404
(0.05) (0.04) (0.17) (0.13) (0.07) (0.03)

Pre-mandate mean 1.05 1.05 1.43 1.43 1.02 1.02
(0.11) (0.11) (0.37) (0.37) (0.11) (0.11)

C. Level 1 -0.11* 0.08 -0.32* -0.24 -0.10* 0.07* 1,110
(0.06) (0.04) (0.15) (0.16) (0.05) (0.04)

Pre-mandate mean 0.96 0.96 1.39 1.39 0.93 0.93
(0.11) (0.11) (0.37) (0.37) (0.10) (0.10)

D. Level 2 0.16 0.16 0.23 0.15 0.02 0.24 936
(0.11) (0.13) (0.27) (0.27) (0.06) (0.11)

Pre-mandate mean 1.46 1.46 2.09 2.09 1.33 1.33
(0.47) (0.47) (0.87) (0.87) (0.34) (0.34)

E. Level 3 0.17*** 0.09* 0.52%** 0.52%** 0.12*** 0.00 1,036
(0.01) (0.03) (0.13) (0.13) (0.01) (0.03)

Pre-mandate mean 1.01 1.01 1.34 1.34 0.99 0.99
(0.08) (0.08) (0.37) (0.37) (0.07) (0.07)

F. Level 4 0.14***  0.17*** 0.40** 0.31** 0.07** 0.12%** 1,480
(0.03) (0.03) (0.17) (0.16) (0.03) (0.03)

Pre-mandate mean 1.26 1.26 1.67 1.67 1.20 1.20
(0.33) (0.33) (0.62) (0.62) (0.25) (0.25)

G. Level 5 0.55** 0.28* 0.90** 0.56** 0.23** 0.21%** 1,080
(0.19) (0.17) (0.35) (0.34) (0.13) (0.08)

Pre-mandate mean 1.04 1.04 1.27 1.27 1.02 1.02
(0.08) (0.08) (0.14) (0.14) (0.08) (0.08)

Covars No Yes No Yes No Yes

Notes: This table presents the estimated average treatment effect on the treated (ATT)
from the GSC model specified in Equation . Data aggregated to the state-year cell
level. Included covariates in the model are mothers’ age, marital status, education and
race; fathers’ race; infant’s sex; percentage of women of childbearing age; percentage of
college-educated women; female labor force participation rate; percentage of employees
working in big firms (employee > 500); percentage with private health insurance; and real
per capita income. Parametric bootstrapped standard errors estimated by 2,000 draws
appear in parentheses.

*p < 0.10, % * p < 0.09, * x *xp < 0.01
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Table 6: Effects of IVF coverage generosity level on the number of infants per thousand
live births, GSC model

All women Women 35 and older Women under 35 Number of state-year cells
1) (2 3) 4) (5) (6)

A. All levels 1.06*** 0.64*** 1.64%** 0.82** 0.52%** 0.57*** 1,923
(0.08) (0.07) (0.30) (0.42) (0.07) (0.12)

Pre-mandate mean 1,011.61 1,011.61 1,015.95 1,015.95 1,011.12 1,011.12
(3.25) (3.25) (6.22) (6.22) (2.51) (2.51)

B. Level 0 0.18 0.27 -2.78 0.12 0.52 0.23 1,404
(0.61) (0.46) (1.9) (1.60) (0.76) (0.42)

Pre-mandate mean  1,010.64 1,010.64 1,014.56 1,014.56  1,010.40 1,010.40
(1.22) (1.22) (3.85) (3.85) (1.15) (1.15)

C. Level 1 -1.25* 0.91*** -3.68%** -3.25* -1.11* 0.77* 1,110
(0.76) (0.42) (1.00) (1.26) (0.64) (0.43)

Pre-mandate mean  1,009.70  1,009.70 1,014.20 1,014.20 1,009.44  1,009.44
(1.12) (1.12) (3.71) (3.71) (1.07) (1.07)

D. Level 2 2.89 2.09* 4.30 2.09 1.53 2.39 936
(1.50) (1.29) (2.57) (2.62) (0.99) (1.18)

Pre-mandate mean  1,015.13 1,015.13  1,021.88 1,021.88 1,013.74 1,013.74
(5.07) (5.07) (9.41) (9.41) (3.70) (3.70)

E. Level 3 1.94%** 0.68*** 3.73** 3.82%** 1.34%** 0.42 1,036
(0.12) (0.16) (1.50) (0.65) (1.10) (0.20)

Pre-mandate mean  1,010.21 1,010.21 1,013.69 1,013.69 1,010.00 1,010.00
(0.78) (0.78) (3.85) (3.85) (0.76) (0.76)

F. Level 4 1.93*** 1.66*** 4.76*** 3.43%*** 1.24%** 1.31%** 1,480
(0.26) (0.20) (0.71) (0.65) (0.20) (0.27)

Pre-mandate mean  1,013.07 1,013.07 1,017.40 1,017.40 1,012.40 1,012.40
(3.71) (3.71) (6.95) (6.95) (2.80) (2.80)

G. Level 5 6.50** 2.92* 10.04** 6.35%* 2.31** 2.18** 1,080
(2.32) (2.12) (3.50) (3.84) (1.65) (0.87)

Pre-mandate mean  1,010.55 1,010.55 1,012.90 1,012.90 1,010.37 1,010.37
(0.84) (0.84) (1.48) (1.48) (0.79) (0.79)

Covars No Yes No Yes No Yes

Note: See notes for Table
*p < 0.10, % * p < 0.05, % * xp < 0.01
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Figures

Figure 1: Patients’ treatment decision by their fertility level

Adoption (A) IVF Natural
Conception (N)

Fo— Log
yrk 14
Note: This figure presents patients’ choices for adopting an infant, IVF treatment and
natural conception by their fertility (f) and the number of IVF cycles covered in their
heath insurance plan (7). F and F respectively denote the upper and lower limits of
natural fertility. 7 denotes the probability conceiving an infant naturally. % denotes the
maximum number of embryos that can be implanted.

Figure 2: Multiple births per hundred live births by women’s age
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Note: Authors’ calculations from the Detail Natality Data. Multiple births are defined
as births that are not singleton.
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Figure 3: Multiple births per hundred live births by IVF coverage generosity level and
age of mother
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(b) Women 35 and older
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(c) Women under 35
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Note: The sample includes all births from National Vital Statistics Detail Natality Data
from 1975-2014. Multiple births are defined as births that are not singletons.
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Figure 4: Effects of IVF coverage generosity level on multiple births per hundred live
births, GSC model for all women
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(c) Level 1

(1) Treated average and estimated average for treated states

(2) Estimated treatment effect on treated
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(e) Level 3

(1) Treated average and estimated average for treated states

(2) Estimated treatment effect on treated
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(g) Level 5

(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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Note: This figure plots the estimated counter-factual outcome Y'(0) and the treatment effect on the
treated on multiple births per hundred live births using the GSC model specified in Equation . The
sample includes all births in the US from 1975-2014 from the National Vital Statistics, aggregated by
state-year. The included covariates in the model are listed in the Notes to Table The gray shade
shows the %95 confidence intervals for the estimated effects.

39



Figure 5: Effects of IVF coverage generosity level on multiple births per hundred live
births, GSC model, women 35 and older

(a) All levels

(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(c) Level 1

(1) Treated average and estimated average for treated states

(2) Estimated treatment effect on treated
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(e) Level 3

(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(g) Level 5

(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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Figure 6: Effects of IVF coverage generosity on multiple births per hundred live births,
GSC model, women under 35
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(c) Level 1

(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(e) Level 3

(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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(g) Level 5

(1) Treated average and estimated average for treated states (2) Estimated treatment effect on treated
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Figure 7:

Patients’ IVF utilization behavior, by IVF coverage generosity level
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(c) Average number of transferred embryos for women 35 and older
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Note: This figure plots trends in patients’ utilization behavior using SART’s clinic-level
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Figure 8: Child adoption rates by IVF coverage generosity level and age of mother

(a) Women 35 and older
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Appendix

A Estimation procedure of a GSC model

There are two main approaches to estimating causal effects when the common trend
assumption is likely to be violated. The first approach uses a matching method to con-
dition on pre-treatment observable characteristics (Abadie| |2005; Abadie et al.l [2010,
2015). This approach helps to balance the effects of time-varying confounders between
the treatment and control groups. The second approach is to explicitly model the unob-
served time-varying confounders by using an interactive fixed effect model which includes
state-specific intercepts interacted with time-varying coefficients (Bai, [2009). GSC links
the matching and interactive fixed effect methods and brings together synthetic control
and interactive fixed effect models where the DD model is a special case. |Xu| (2017) pro-
vides a procedure for estimating a Generalized Synthetic Control (GSC) model specified
in Equation as:

Yit = 0uDix + X3, 8 + N fr + €. (A1)

The procedure consists of three main steps. The first step includes estimating an interac-
tive fixed effect model using the data only from the control group (i.e. setting Dy = 0 in
Equation (A.1)). Assume that F' = [f1, fa, ..., fr] and Aconiror = [, A2, -y Acontror] Where
control denotes the number of states in the control group and 7" denotes the time periods
in the analysis. r is the number of factors (f; and \; are r vectors). To identify 3, F'

and Aconiror however more constraints are required. Two constraints are imposed. First,
g

all factors are normalized, = I, where I, denotes the identity matrix and |7T'| is the

7|
total number of time periods in the analysis. Second, loadings are orthogonal to each

other, A ]\wmml = 0. To obtain the estimated B , F and /A\C(mtml then:

control

(37 ﬁ, [A\control) = argmax Z (Y; - XiB - ﬁj\i)/(Yi - XiB - ﬁj\z)7 (A-Q)
,/B\,F,meml i€control
F'F - -
s.t. W = IT and Alcont?“olAcont"'Ol =0.

The number of factors r is unknown and is estimated through a cross validation
process that minimizes the prediction error of the model. The estimation process starts
with a given r to obtain the corresponding B , F and /A\C(mtml. For each pre-treatment
period s € {1,2,..., Ty} (Ty denotes the number of pre-treatment periods), we hold back
data of all treated states at time s. We then run an OLS regression using the rest of

the pre-treatment data to obtain factor loadings for each treated unit ¢, X@_S. We next

o1



predict the treated outcome at time s as Ji5(0) = X/, 5 + /A\i,_sfs
We define the prediction error as e;; = ;5(0) — 7;s(0). The mean square prediction

error (MSPE) for given r is defined as:

To 2

(oh

MSPE(r)=)_> = (A.3)

s=14€T Ty

This process is repeated for different values of r (we try r» € {1,2,...,5}). Then, r*
corresponding to the smallest prediction error is chosen.

The factor loadings for the treated states are estimated in the second step. This is

done by minimizing the MSPE of the predicted treated outcome in pretreatment periods:

5, = argmax(y? - X0 — FO%,) (v - X25 - F%, (A.4)

A

where 707 superscripts denote the pre-treatment time periods and B and F° are estimated
from the first step.
Finally, the third step estimates the treated counter-factual based on B, F and ).
That is:
J(0) = X\,B+ N.f; for i € Treated, t > Ty (A.5)

The estimated average treatment effect on the treated at time ¢, ATT; then is:

1

ATT, = ——
"7 |Treated|

> [wa(1) = 5x(0)]  for ¢ > Ty (A.6)

i€Treated

Ly;¢(1) and y;(0) denote the potential outcomes for state i at time ¢ when respectively D;; = 1
(treated) and D;; = 0 (not treated).
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