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Abstract 
 

Objectives 

Treatment variation across healthcare providers is seen as a sign of suboptimal provision of care. 
However, it is often unclear whether such variation is really provider-driven or rather related to 
(unobserved) patient characteristics. And if variation is provider driven, it is often unclear whether 
this is due to differences in treatment allocation across providers or differences in skills (comparative 
advantages of some providers over others). In this study, we examine the desirability and underlying 
sources of between-hospital variation in surgical treatments for breast cancer. Specifically, provider 
variation between mastectomy and lumpectomy. We distinguish between three sources of variation: 
differences in (unobserved) patient characteristics, differences in comparative advantages, and 
allocative inefficiencies. 

Methods 

We estimate a case-mix corrected treatment propensity score using individual claims data of a Dutch 
health insurer between 2016 and 2018. This score captures a hospital’s propensity to provide 
lumpectomy instead of mastectomy. Using an instrument based on geographical distance, we test 
how well the provider’s propensity to offer a lumpectomy predicts actual treatment for a quasi-
random group of patients. Additionally, we assess the effects on health outcomes for this same 
group of quasi-randomly assigned patient. To further explore the sources of provider-driven 
variation, we relate the score to hospital-specific characteristics such as the availability of facilities 
and surgeons and reimbursement schemes.  

Results 

After conditioning on relevant observable patient characteristics like clinical and socioeconomic 
background, we find substantial variation in surgical breast cancer treatments across 84 Dutch 
hospitals. We do not find any evidence that this variation is driven by selection based on 
unobservable patient characteristics. The differences in treatment impact clinically important patient 
outcomes for randomly selected patients such as infection- and reoccurrence rates which indicates 
that provider variation leads to suboptimal care for patients with breast cancer. Lastly, these findings 
are associated with factors that suggest comparative advantages for some providers, but also with 
factors indicating allocative inefficiency due to financial incentives.  

Discussion 

We provide evidence of substantial unwarranted provider-driven treatment variation in the surgical 
treatment of breast cancer. However, the drivers of this variation seem complex. It seems that some 
providers are better suited to treat a larger share of their patients with a lumpectomy. Decreasing 
variation then requires improvement of low-skilled providers or reallocation of patients across 
providers. Some of the variation, however, seems to be related to potential drivers of allocative 
inefficiencies, which would warrant better guidelines or the removal of undesired financial 
incentives. 

 

 



1. Introduction 
 

Variation in treatment choices across providers is a well-know and often observed issue in health 
care (Westert, 1991; Jong, 2008; Wennberg, 2010). The Institute for Healthcare Improvement (IHI) 
called such variation the “culprit” behind general healthcare waste (Ferguson, 2017). However, 
making sense of observed differences across providers is often difficult. Treatment variation is 
unwarranted when “differences in treatment for patients with similar needs result in different 
outcomes” (Wennberg, 1984 & 2002).  Often it is unclear to what extent the observed variation really 
reflects differences in treatment choices across providers or (unobserved) differences in patient 
characteristics. In this study, we estimate an indicator for the variation in the surgical treatment of 
breast cancer across Dutch hospitals. We contribute to the existing literature in three ways. First, we 
assess whether our estimates are biased by unobserved factors. We do this using a distance-based 
instrumental variable analysis to test whether this indicator is able to predict the actual treatment 
choice for (quasi-)randomly assigned patients. Second, we estimate whether differences in treatment 
lead to unwarranted variation in clinically relevant outcomes. Third, we relate the providers’ 
treatment choices to characteristics that are indicative of either differences in skill (highlighting 
comparative advantages) or differences in financial incentives (highlighting potential allocative 
inefficiencies). 

Breast cancer is one of the most prevalent types of cancer in women: approximately 1 in 8 women 
develop it. In 2018, in the Netherlands, 14,900 women were diagnosed with an invasive type of 
breast cancer and 2,600 with a non-invasive, early form the disease, DCIS. For women with breast 
cancer, two surgical options are available. The surgeries are likely to be equally as effective for 
people with (only) one site of cancer in the breast, a tumour with clear margins and under 4 
centimetres in size, and certain patient characteristics related to the size of the breast, genetics (e.g.  
the BRC1 gene) and family history. For these people, the practitioner has discretion over what 
surgery to provide. If clinical requirements are not met, however, the breast will need to be 
removed. This is called a ‘mastectomy’ (MST) and is performed in over 40 percent of the severe 
cases. MST comes at an increased risk of infections and the need of follow-up reconstruction. The 
second option is ‘lumpectomy’ (LUM), a breast-conserving surgical treatment. Being less invasive, 
LUM results in a better cosmetic result but simultaneously, has a higher likelihood of being followed 
by treatment with radiotherapy and cancer reoccurrence (IKNL; NKR). 

The observed variation in surgical treatment for breast cancer across providers is substantial and can 
lead to suboptimal health outcomes for patients (Dodwell et al, 2020; Derks et al., 2018). Several 
studies provide evidence on treatment variation across hospitals in the Netherlands for patients with 
similar observed characteristics. Gort et al. (2007) mention how, despite Dutch national guidelines on 
breast cancer care (Dutch National Breast Cancer Platform, oncoline.nl), surgical treatments continue 
to vary across hospitals. After correcting for case mix, they find substantial inter-hospital and -
surgeon variation. Supporting these results, Siesling et al. (2005) find substantial regional and inter-
hospital variation in surgical treatments for the south-eastern and eastern region of the Netherlands. 
These findings are in line with those for other countries, such as the U.S. (Beaulieu et al. 2003; Iward 
et al. 1998), Canada (Fisher et al, 2002), Australia (Craft et al. 2010) and China (Liu et al. 2012).  

This supposedly hospital-driven variation can, however, be driven by unobserved patient 
characteristics that cannot be corrected for using available patient data. As a result, when patients 
select into treatments based on unobservable preferences on treatment outcomes and quality (such 
as their stance on risk and aesthetics), the estimates of treatment variation based on case-mix 



corrected regressions will be biased by these unobserved characteristics. Basu et al. (2007) examine 
the variation between breast cancer treatment with MST and LUM in the United States, and find 
evidence of self-selection based on expected gains/losses from treatments at the individual level 
(i.e., risk-averse patients prefer MST). Selection bias is similarly explored in other healthcare settings, 
using geographic location as an instrument to exploit the unbiased variation in hospital-factors on 
treatments. Overall, unobserved patient characteristics are found to play a role in treatment choice 
(Hadley et al., 2003; Gowrisankaran and Town, 1999).  

The first question we want to answer is whether the observed variation in surgical breast cancer 
treatment across Dutch hospitals really reflects differences in treatment choices for similar patients. 
To do so, we first estimate a case-mix controlled intensity score that indicates a hospital’s propensity 
of treating a patient with a mastectomy instead of a lumpectomy. We estimate this propensity with a 
logit model using individual claims data of a large Dutch health insurer, containing 6255 unique 
patients treated in 84 hospitals between 2016 and 2018. To test whether this score is biased due to 
selection based on unobservable patient characteristics, we use a ‘forecasting test’ based on the 
instrumental variable (IV) framework. We estimate how well the intensity score is able to predict the 
treatment choice for patients who are quasi-randomly assigned to a hospital based on geographical 
distance. This test was developed in the context of education (Angrist et al. 2015) and recently 
applied in the health care setting by Abaluck et al (2020). This test has a considerable practical 
advantage compared to the alternative of trying to estimate a `causal’ score for each separate 
hospital, which would require a separate first-stage for each individual hospital and which can be 
cumbersome to implement, especially when the number of patients is low for some providers (Hull, 
2017; Abaluck et al, 2020).   

The second question is to what extent treatment variation leads to variation in relevant clinical 
outcomes of similar patients. Unlike for some treatments, like for instance for heart attacks (see 
Chandra et al. 2020), for many breast cancer patients there is no single dominating outcome which 
can be used to assess the optimality of treatment choice. Mortality among treated breast cancer 
patients is low (Narod et al. 2015; Jatoi et al. 2003) and preferences between morbidity dimensions 
such as reoccurrence risk, infection risk, and contour preservation can differ across individuals with 
the same severity. However, regardless of whether we know the optimal outcome, following the 
definition of unwarranted treatment variation of Wennberg (1984), we would want the outcomes of 
similar patients randomly assigned to hospitals to be the same. We use this intuition and estimate 
the effects of hospitals’ treatment intensity score on death-, infection- and reoccurrence rates on 
quasi-randomly assigned patients using an IV. 

The third question investigates what is behind provider-based differences in treatments. There are 
two main sources of provider variation (Chandra and Staiger, 2020). The first source regards 
comparative advantages: some providers are better in a certain type of treatment due to higher skill 
and can therefore offer that to a larger share of their patients. The second source regards allocative 
inefficiencies: conditional on their expertise, some providers over- or under provide a certain 
treatment. Providers might have beliefs that are not supported by clinical evidence (Cutler et al., 
2019) or face so-called ‘professional uncertainty’, being uncertain in what is the right thing to do 
(Atsma et al, 2020). They might also optimize something else than a patient’s health benefit, such as 
their own financial gain or benefits of future patients (e.g., ‘learning-by-doing’). Disentangling these 
two sources is challenging.1  We therefore not study these sources directly but study the association 

                                                            
1 Chandra and Staiger (2020) study the variation in treatments after a heart attack and distinguish between 
both sources by comparing patients with the same hospital-specific propensity for treatment. However, their 



between hospital’s intensity scores and characteristics either related to differences in skills or to 
potential incentives to under- or overprovide certain treatments. 

We find substantial variation in surgical breast cancer treatments across Dutch hospitals, which his 
unlikely to be driven by differences in patient characteristics and leads to unwarranted differences in 
patient outcomes. The variation in treatment choice is associated both with supply-side mechanisms 
indicating comparative advantage in providing a certain type of treatment and factors that suggest 
incentives for providers choices which are suboptimal for patients.  Altogether, this signals to 
suboptimal delivery of breast cancer care that should be addressed with caution to its supply-side 
source. 

2. Economic model 
 
To understand the relation between observed variation in treatments, selection based on 
unobserved characteristics and outcomes, we use a model of selection based on outcomes derived 
from Chandra et al. (2020). Suppose we have one relevant outcome of surgical breast cancer 
treatment. 𝑌𝑌𝑖𝑖ℎ∆ = 𝑌𝑌𝑖𝑖ℎ𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑌𝑌𝑖𝑖ℎ𝐿𝐿𝐿𝐿𝐿𝐿 represent the difference in the expected outcome for patient i from 
receiving a MST versus a LUM in hospital h. We assume that this outcome is a linear function of 
observable patient-characteristics like age, medical history and other observed SES factors (captured 
by 𝑋𝑋𝑖𝑖), unobserved characteristics (𝜀𝜀𝑖𝑖∆), and hospital-specific benefit of providing MST over LUM (𝛼𝛼ℎ∆): 

 
𝐸𝐸�𝑌𝑌𝑖𝑖ℎ∆� =  𝛼𝛼ℎ∆ + 𝑋𝑋𝑖𝑖𝛽𝛽ℎ∆ + 𝜀𝜀𝑖𝑖∆. 
 

(1) 

For optimal patient benefits, a patient treated in hospital h should receive MST when 𝐸𝐸�𝑌𝑌𝑖𝑖ℎ∆� > 0, 
and LUM otherwise. Actual treatment choice – in terms of the probability of receiving treatment with 
MST – is determined by the expected benefits and a hospital-specific threshold 𝜏𝜏ℎ: 

Pr(𝑇𝑇𝑖𝑖ℎ = 𝑀𝑀𝑀𝑀𝑀𝑀) = Pr� 𝐸𝐸�𝑌𝑌𝑖𝑖ℎ∆� >  𝜏𝜏ℎ� = Pr�𝛼𝛼ℎ∆ + 𝑋𝑋𝑖𝑖𝛽𝛽ℎ∆ + 𝜀𝜀𝑖𝑖∆ >  𝜏𝜏ℎ�.        (2) 

The hospital-specific threshold 𝜏𝜏ℎ reflects the fact that hospitals might deviate from the optimal 
treatment choice, either because they have biased beliefs about the expected benefits of the 
treatments, or because of for instance financial incentives. Put differently, 𝜏𝜏ℎ indicates the minimal 
expected benefits threshold that needs to be exceeded for hospital h to provide MST. A threshold of 
𝜏𝜏ℎ = 0 indicates an optimal, or efficient provision. Anything else, indicates to allocative inefficiencies 
in the provision of treatments. Where hospitals with a threshold of 𝜏𝜏ℎ > 0 overprovide LUM 
(providing less MST due to a higher threshold for benefits), which means that those patients for 
whom the expected benefits from receiving MST are (slightly) higher than those from receiving LUM 
do not receive MST. Reversely, hospitals with 𝜏𝜏ℎ < 0 provide more MST than optimal, meaning that 
patients for whom the expected benefits from receiving LUM are higher than those from receiving 
MST do not receive LUM. 

To measure treatment variation, we have to consider whether, conditional on observable 
characteristics, there are structural differences in receiving either MST or LUM. This could be done by 
estimating the following (in this example linear) probability model: 

                                                            
approach requires quite strong assumption on the way providers make treatment decisions, which makes it 
less suitable in cases of breast cancer treatment, where there is no single dominant outcome measures (such 
as survival in case of heart attacks). 



Pr(𝑇𝑇𝑖𝑖ℎ = 𝑀𝑀𝑀𝑀𝑀𝑀| 𝑋𝑋𝑖𝑖) =  𝛿𝛿ℎ + 𝛽𝛽𝑋𝑋𝑖𝑖 +  𝜀𝜀𝑖𝑖.        (3) 

The term 𝛿𝛿ℎ = 𝛼𝛼ℎ∆ + 𝜏𝜏ℎ is the provider-driven treatment variation. It captures both differences in 
advantages 𝛼𝛼ℎ∆ in providing MST over LUM and differences in the treatment threshold 𝜏𝜏ℎ. First, we 
discuss the potential bias in the estimates of 𝛿𝛿ℎ caused by selection into treatment based on 
unobservable characteristics. Second, we discuss the relation with expected outcomes. Third, we 
return to the two sources of provider-driven variation: 𝛼𝛼ℎ∆ and 𝜏𝜏ℎ. 

First, the empirical equivalent of Equation (3) is the following estimation: 

Pr(𝑇𝑇𝑖𝑖ℎ = 𝑀𝑀𝑀𝑀𝑀𝑀| 𝑋𝑋𝑖𝑖) =  ∑ 𝐼𝐼𝑖𝑖ℎδ�ℎ𝐻𝐻
ℎ=1 + 𝛽̂𝛽𝑋𝑋𝑖𝑖 +  𝜀𝜀𝑖𝑖,       (4) 

with 𝐼𝐼𝑖𝑖ℎ an indicator equal to 1 if patient i is treated in hospital h. The estimated hospital-specific 
treatment indicators δ�ℎ are only unbiased estimators of true provider-driven treatment choices if 
unobserved patient characteristics are distributed equally across all hospitals, or: corr(𝜀𝜀𝑖𝑖 , δh) = 0. In 
other words: the estimates of δ� only reflect true differences in treatment choices across hospitals as 
long as differences in treatment are not driven by the fact that some hospitals have a larger share of 
patients with unobserved characteristics for which one particular treatment is more beneficial than 
the another. 

Second, true provider-driven treatment variation as indicated by 𝛿̂𝛿ℎ , whether driven by comparative 
advantages or by different treatment thresholds, is always unwarranted in the sense that it means 
that some patients with equal needs receive different treatments leading to different outcomes 
depending on which hospital they visit. It is important to note that, to identify unwarranted variation, 
it is not always necessary to know the optimal treatment for each patient. There are a number of 
different outcomes related to the choice of LUM or MST, of which the weights used to determine a 
patient’s wellbeing not only depend on the severity of the breast cancer, but also on individual 
preferences (e.g. risk aversion, aesthetic preferences). However, even if we do not know the weights 
of the different outcomes for patients, we do know that conditional on an individual’s observed and 
unobserved characteristics the outcome and treatment choice should (ideally) be independent of 
which hospital a patient happens to visit. 

Third, the provider-based treatment variation 𝛿𝛿ℎ captures two terms. The first source of treatment 
variation 𝛼𝛼ℎ∆ reflects differences in hospital-specific patient benefits from MST versus LUM. For 
instance, higher skills or access to the right facilities, may allow providers to effectively treat with a 
LUM in breast cancer cases where others would be limited to providing a MST. The second source of 
treatment variation 𝜏𝜏ℎ reflects differences in treatment choices for patients with the same expected 
outcomes: taking both the patient characteristics and their own skills into account, some providers 
might still make different choices in who they treat with LUM or MST compared to other providers. 
Although both sources lead to undesirable treatment variation, the policy implications can be quite 
different: differences in comparative advantages might warrant additional training for surgeons or 
reallocation of certain types of patients to specialized hospitals, while differences in the treatment 
thresholds might require the implementation of stricter guidelines or the elimination of perverse 
financial incentives. 

Thus, the sources of δh, although both potentially unwarranted, might have different natures that 
require different solutions. As a last step, we discuss two methods that can help to further 
distinguish these supply-side sources. First, allocative inefficiencies can be identified when the 
benefit of a particular treatment differs across hospitals for patients with the same propensity to be 
treated with that treatment – more specifically, being lower among those hospitals that overprovide 



the treatment (Chandra & Staiger 2020). However, while this method is fit for settings in which 
treatments have a clear outcome with trade-offs such as death or survival, its application becomes 
rather complex when the benefit from treatment is multi-dimensional (as it is in our case). 
Alternatively, when lacking a clear benefit from treatment, the extent to which the provider-driven 
variation 𝛿𝛿ℎ is associated with factors related to expertise/skills (signaling 𝛼𝛼ℎ) or to perverse 
incentives for a specific treatment (signaling 𝜏𝜏ℎ) can be analyzed. 

3. Data  
 
To estimate treatment variation across providers we use claims data for breast cancer surgical 
treatments with MST and LUM obtained from a Dutch health insurer. We retrieve data for women 
only, at the level of care activities2, that consists of patients with similar needs in terms of treatment 
and signals their specific surgery undergone in the period between 2016 and 2018. The surgeries are 
identified as follows: (i) MST is identified as an operation of big or complicated tumors, mamma 
amputation with removal of axillary lymph nodes, or mamma amputation either with or without skin-
reduction (excl. axillary lymph nodes procedures); (ii) LUM is identified by codes for all the remaining 
surgeries, not equivalent to the ones above. As far as data allows, we consider medical guidelines to 
exclude severely ill patients from our sample selection.  

We obtain a final sample consisting of 6255 patients out of which 2736 (44%) receive LUM and 3519 
(56%) receive MST, as their first surgery. The sample consists of 84 hospitals, each, treating in 
between 1 and 511 patients. To ensure the reliability of our study, we add an inclusion criterion for 
hospitals: these must have a minimum sample size of 50 patients. To control for observable 
characteristics, we extract patient-level information such as age and disease history from the 
insurer’s database. Disease history is indicated via (1) FKGs (i.e., ‘pharmaceutical cost categories’), 
which encompass claims data on drug use for 30 different chronic conditions (such as diabetes or 
depression); and (2) DKGs (i.e., ‘expected medical specialist’s expenditures in (t+1)), which are based 
on prior spending and where the higher the DKG value, the higher the expected expenditures. Next, 
zip-code level (4-digits) data is retrieved from Statistics Netherlands (CBS) to provide information on 
patient’s socioeconomic status: ethnicity, marital status, education, income, and social benefits. The 
descriptive statistics of these variables can be found in Appendix A, table 1. 

To provide insight on health effects of treatment differences, we retrieve individual-level claims data 
on the health outcomes, namely, death-, reoccurrence- and infection-rates. Death is measured by 
one-year post-surgery mortality rates. Reoccurrence is measured based on the number of times a 
patient receives a surgery within one-year after the initial treatment. Infections are measured by 100 
days post-surgery infection rates. In addition to the individual level data on outcomes, we also 
include a hospital-level outcome indicators from the Dutch Healthcare Institute (ZiN): the percentage 
of preserved breast contours in 2018. The corresponding descriptive statistics can be found in 
Appendix A, table 3.  

Finally, to document the relation of supply-side characteristics to treatment variation, we obtain 
hospital-level data. First, we extract information on the ‘type of reimbursement’ from the Dutch 
insurers’ database regarding either global budgets (GB) or a more flexible payment scheme, i.e. a 
cost ceiling budget (CCB). GB schemes refer to a (fixed) prospective payment covering all services 
provided in a given period. CCB schemes depict more flexible contracts that keep a global budget but 

                                                            
2 These activities form a ‘diagnosis-related group’ (DRG). DRGs are used to categorize patients with similar clinical diagnoses 
and, by doing so, give the means to relate the type of patients a hospital treats (its case-mix) to its costs.  



also use production-based funding with a cap on spending. We also obtain data from ZiN on the 
‘number of plastic surgeons available’, ‘participation in PROM surveys’ and the ‘percentage of 
patients (in need) that see a radiotherapist’. Some supply-side characteristics, such as access to 
radiotherapy, can signal specialization in one of the two treatment options. Specifically, treatment 
with radiotherapy is often required daily for 5 to 6 weeks after a LUM (more so than after a MST) 
(Acharya et al. 2015), and therefore, the availability of such facilities can increase the hospital’s 
likelihood to offer a LUM. Others, like the type of reimbursement, can signal allocative inefficiencies. 
Specifically, hospitals paid with global budgets may face cost-cutting incentives, due to which MST, 
being the cheaper surgery (Barlow et al. 2001), can become more attractive to provide than LUM.  

It is noteworthy that this section only includes and studies data for the year of 2018, as there was a 
lack of consistent data across the two sources (Dutch insurer and ZiN) for previous years. We argue 
that examining 1 year is sufficient for the scope of this subsection: i.e. providing insight into the 
sources of treatment variation across providers. Moreover, this approach is believed to give a recent 
picture for the provision of breast cancer care, free of potential discrepancies from policy changes 
throughout the period of 2016-18. The corresponding descriptive statistics are shown in Appendix A, 
table 4. 

4. Methods 
 
4.1. A model for treatment variation across hospitals 
 
First, we estimate a case mix corrected treatment intensity for each hospital: δ�h. We do this in two 
steps. First, we estimate the probability that patient i receives either a mastectomy (treatment 𝑇𝑇𝑖𝑖  = 
1) or a lumpectomy (treatment 𝑇𝑇𝑖𝑖  = 0) as a function of her clinical characteristics and socioeconomic 
characteristics using a logistic model.  

P(𝑇𝑇𝑖𝑖 = 1|𝑥𝑥𝑖𝑖,1, 𝑥𝑥𝑖𝑖,2 … 𝑥𝑥𝑖𝑖,𝑘𝑘) =
exp�𝛽𝛽0 +  𝛽𝛽1𝑥𝑥𝑖𝑖,1 + ⋯  𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖,𝑘𝑘 �

1 + exp�𝛽𝛽0 +  𝛽𝛽1𝑥𝑥𝑖𝑖,1 + ⋯  𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖,𝑘𝑘 �
 

(6) 

where 𝑥𝑥𝑖𝑖,1, … , 𝑥𝑥𝑖𝑖,𝑘𝑘 are the patient characteristics  

Second, we construct the hospital-specific intensity score by averaging the difference between a 
patient’s actual treatment 𝑇𝑇𝑖𝑖 and their predicted treatment probability 𝑝̂𝑝𝑖𝑖 at the hospital level: 

δ�h =
1
𝑁𝑁ℎ

�(𝑇𝑇𝑖𝑖 − 𝑝̂𝑝𝑖𝑖)
𝑁𝑁ℎ

𝑖𝑖=1

 
 

 (7) 

where 𝑁𝑁ℎ is the total number of patients in hospital h. This results in hospital-specific scores between 
-1 and 1 given that 𝑡𝑡𝑖𝑖  equals either 0 or 1 and 𝑝̂𝑝𝑖𝑖 ranges between 0 and 1. A score close to 0 implies 
that number of LUMs and MSTs provided by the hospital is in line with what is expected based on the 
characteristics of the hospital’s patients. A score close to 1 implies that a hospital overprovides MSTs 
compared to what is expected, while a score close to -1 implies an overprovision of LUM. 

The distribution of the intensity scores across Dutch hospitals provides our indicator of treatment 
variation in breast cancer surgery. However, this is only a valid indicator if our estimates are not 
biased by unobserved confounders. In the next section, we explain how we test for this bias. After 
that, we go into the way we try to disentangle the two sources of provider-based treatment 
variation. 



4.2 Testing for variation driven by unobserved patient characteristics 
 
To assess whether our estimated intensity score is unbiased we use the following intuition. Suppose 
we could randomly assign a large group of patients across all Dutch hospitals. If the intensity score is 
unbiased, and thus truly reflects the treatment choices of each hospital, then it would be able to 
perfectly predict the average treatment of the group of random patients assigned to each hospital. A 
simple test would then be to run the following regression on the sample of randomly assigned 
patients: 

𝑇𝑇𝑖𝑖 = 𝛽𝛽0 +  𝛽𝛽1𝛿̂𝛿ℎ,𝑖𝑖 +  𝛽𝛽2 𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖.         (8) 

If 𝛿̂𝛿ℎ,𝑖𝑖  is unbiased and thus predict treatment choice then we would find 𝛽𝛽1 = 1. 

In practice, we cannot randomly assign patients across hospitals, so we need to rely on another 
source of credible random variation. For this, we use an instrumental variables (IV) analysis based on 
the distance between a patient’s home and the hospital. Distance is a well-known important driver of 
hospital choice (Hadley et al., 2003; Sanwald and Achober, 2017; Basu et al, 2007; Penrod et al, 2009; 
Gowrisankaran and Town, 1999) and, conditional on the control variables we include, the location of 
a patient’s home is unlikely to be correlated with her optimal choice between LUM and MST. The 
instrument thus seems to fulfill the two main criteria for a good instrument: relevance and 
exogeneity.3  

We implement the IV-based forecast test using two-stage least squares. In the first stage, we make a 
prediction of the intensity score for patient i based on the intensity score of the hospital closest to 
her home. We do this by regressing the intensity score of the hospital that patient i actually visited 
on the intensity score of the nearest hospitals and the control variables: 

δ�h,i =  𝛼𝛼0 +  𝛼𝛼1𝛿̂𝛿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 +  𝛼𝛼2𝑋𝑋𝑖𝑖 + 𝑣𝑣𝑖𝑖 (9) 

Using the first-stage regression we make a prediction δ��h,i which we then use to predict the 
actual treatment for (quasi-)random patient i in the second stage: 
 

 

𝑇𝑇𝑖𝑖 = 𝛽𝛽0 +  𝛽𝛽1𝛿̂𝛿ℎ,𝑖𝑖 +  𝛽𝛽2 𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖 (10) 

 
The coefficient 𝛽𝛽1 now captures the effect of the intensity scores 𝛿̂𝛿ℎ,𝑖𝑖 for the group of patients whose 
choice for a hospital is based on their distance to home and is thus unrelated to 𝜀𝜀𝑖𝑖. This means that, 
equivalent to the hypothetical test for a group of randomly assigned patients, we can test whether 
𝛽𝛽1 = 1 for this quasi-randomly assigned group. If we find that 𝛽𝛽1is not significantly different from 1, 
we conclude that, on average, our estimates of treatment intensity or not biased by confounding 
with unobserved characteristics. 

4.3 The impact of treatment variation on patient outcomes 
 
To determine whether the established hospital-specific treatment variation is unwarranted, we 
examine to what extent differences in treatment intensity lead to differences in outcomes. We do 
this using a similar reasoning as in Section 4.2: we use a distance based IV to assess whether a 

                                                            
3 The third criterium, monotonicity, is also likely to be satisfied: it is unlikely that there are some patients that 
do not choose the nearest hospital because it is nearest. 



hospital’s estimated intensity score is predictive for the outcomes of (quasi-)randomly assigned 
patients. As patient-level outcome measures, we consider infection-, death- and reoccurrence rates. 
Using an equivalent set-up to the analysis portrayed in Equations 9 and 10, the outcome measures 
are modelled through an IV with two stages and causal estimates are obtained. 

𝛿̂𝛿ℎ,𝑖𝑖 =  𝛼𝛼0 +  𝛼𝛼1𝛿̂𝛿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 +   𝛼𝛼2𝑋𝑋𝑖𝑖 + 𝑣𝑣𝑖𝑖,ℎ (10) 

𝑄𝑄𝑖𝑖 = 𝛽𝛽0 +  β1𝛿̂𝛿ℎ,𝑖𝑖 +  𝛽𝛽2𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖 (11) 

where 𝑄𝑄𝑖𝑖 represents patient-level outcome measures 

In addition, we consider one hospital-level outcome measure: the hospital-specific percentage of 
patients that preserve their breast contour. As we only have this outcome on the hospital level and 
not the patient level, we cannot perform our IV analysis here and have to rely on the association 
between the intensity score and the outcome using standard OLS: 

𝑄𝑄ℎ = 𝛽𝛽0 +  β1δ�h,i +  𝛽𝛽2𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖 (12) 

where 𝑄𝑄ℎ represents hospital-level outcome measures 

Finally, we provide graphical representations of the established quality associations for the entire 
range of the score.4 

4.4. The supply-side mechanisms behind treatment variation across providers   
 
This section serves as a starting point in defining the hospital-specific intensity score, providing 
insights in the supply-side mechanisms (sources) underlying treatment variation across providers. We 
examine the extent to which the score is associated to hospital-specific characteristics, which, based 
on theory, are known to be linked to allocative inefficiencies or comparative advantages. 

δ�h =  𝛽𝛽0 +  𝛽𝛽1𝐹𝐹ℎ +  𝛽𝛽2𝑁𝑁𝑁𝑁ℎ +  𝜀𝜀ℎ (13) 

where 𝐹𝐹ℎ are the financial- and 𝑁𝑁𝑁𝑁ℎ are the non-financial supply-side factors considered 

Note that Equation 10 does not isolate nor quantify allocative inefficiencies and comparative 
advantages across providers. Moreover, unlike the methods used in section 2 and 3, this analysis is 
not causal. It merely signals to potential mechanisms stemming from provider variation inducing 
sources. 

5. Results 
 
5.1 Treatment variation across hospitals 
 
We obtain the average hospital-specific treatment intensity score by first estimating the propensity 
for each patient to be treated with MST (instead of LUM) based on individual characteristics, and 
then take the average difference between the predicted treatment propensity and the actual 

                                                            
4 To do so, we consider different functions of the intensity scores (e.g. quadratic, cubic, logarithmic) and exploit 
the functional form of the intensity score through local polynomials (including their confidence bounds). Note 
that we use the intensity score function with the highest R-square, which, for all outcome measures, is the 
quadratic form. 



treatment for each hospital.  Full model estimates, together with more restricted versions of the 
model, can be found in Appendix B. 

Age and disease history (represented by FKGs and DKGs) have a significant contribution to the logit 
model that predicts the propensity to be treated with a MST. An older age increases the likelihood of 
receiving MST. Patients with the chronic conditions of depression, epilepsy, rheumatism, diabetes 
and psoriasis compared those without any conditions, are associated with having a higher likelihood 
of receiving MST. Similarly, having higher expected medical expenditures is associated with having a 
higher likelihood for receiving MST. Overall, these associations indicate that the older and sicker the 
patient, the higher the likelihood for receiving MST. The effects of socioeconomic status, although 
most often found to be insignificant, yield that being non-Dutch, having the status of divorced, or 
being lower educated is associated with a lower likelihood for receiving MST. 5  

By comparing the predicted probabilities with the actual treatments received per hospital, we find 
substantial variation in surgical breast cancer treatments across Dutch hospitals. While some 
hospitals are found to provide substantially more MST than expected based on patient characteristics 
(δ�ℎ> 0), others are found to provide substantially more LUM than expected based on patient 
characteristics (δ�ℎ < 0). The intensity scores across all 84 hospitals take on the maximum value of 
0.558 and the minimum value of -0.351. However, to ensure reliability, we focus on the scores to 
hospitals treating more than 50 patients. Figure 1 portrays the respective scores, taking a maximum 
value of 0.442 and the minimum value of -0.213, and their CIs over the entire range [-1,1].  

 

Figure 1 

 

5.2 Bias through selection on unobservables? 
 
To test for confounding based on unobserved patient characteristics we apply the forecasting test 
which, simply put, compares the treatment choice we would expect based on 𝛿̂𝛿ℎ with the actual 
treatment choice for a quasi-randomly assigned group of patients. If 𝛿̂𝛿ℎ is unbiased, we expect it is 
(on average) able to perfectly predict treatment choice, and its coefficient in our prediction model to 
be equal to 1. 

                                                            
5 Socioeconomic variables are retrieved at zip-code level in 2014 (as we could not access more recent ones) and introduced 
under the assumption that the trends across zip-codes perceived for 2014 remain representative for 2016-18. However, we 
are not able to confirm this assumption. Therefore, we must be mindful of this being a potential reason to why most SES 
factors are found to be insignificantly associated with treatment variation. 



Testing the instrument  

In the first stage we use a distance-based instrument (‘hospital-specific intensity score of the nearest 
hospital’) to exploit the exogenous variation in the treatment intensity score and to predict the 
treatment choice of MST relative to LUM. Our distance-based instrument is found to satisfy the 
minimum requirement of strength and relevance in predicting the hospital-specific treatment 
intensity. More specifically, we find a partial F-statistic larger than 10 (F=1759.61)6 and a highly 
significant (p<0.0001) coefficient of the instrument in the first stage that yields: a 1 percentage point 
increase in the intensity score at the nearest hospital is associated with an increase of 0.520 
percentage points of the intensity score of the hospital actually visited, at a 1% significance level 
(p<0.0001). This implies that individuals who live close to a hospital with a high treatment intensity 
indeed have a statistically and economically higher chance of being treated in a hospital with a high 
treatment intensity.   

Test for selection bias 

Based on the second stage estimates, we find a forecasting IV coefficient for the ‘intensity score’ 
equal to 1.045. Based on its 95-% confidence interval [0.953, 1.09], we conclude that is not 
significantly different from 1. The preciseness of our forecasting coefficient is further tested and 
confirmed to not deviate from 1 in a sensitivity analysis in Section 6.3. Altogether, we reject the 
hypothesis that intensity score estimates 𝛿̂𝛿ℎ (as shown in Figure 1) are, on average, biased by self-
selection based on unobserved patient preferences.  

Table 1: First and Second stages (2SLS) estimates of IV model 

 
VARIABLES 

 
First stage 

Treatment intensity score (δ�h,i) 

 
Second stage 

Treatment choice (Ti) 
Treatment intensity score of the 
nearest hospital (𝛿̂𝛿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 

0.520 (0.012) ***  

Treatment intensity score  

(𝛿̂𝛿ℎ,𝑖𝑖) 

 1.045 (0.061)  
 

Observations 6255 6255 
R-square 
Partial F-statistic (instrument)  

0.3504 
1759.61  

0.0885 
 

Std. errors in parentheses            *** p<0.01, ** p<0.05, * p<0.1      Sample of 6255 patients 
 
Table 1 portrays the second stage in a limited form, showing only the relevant test statistic. The full 
model, with all independent variables accounted for, can be found in Appendix C.  
 

5.3 Relation with health outcomes 
 
In this section, we explore the impact of intensity scores on health outcomes to say something about 
the health implications of provider-driven variation in treatment choice. Based on the assumption 
that patients indeed have similar (unobserved) characteristics, variation in health outcomes related 
to variation in treatment choice is deemed unwarranted.  

To support our estimations, we fit local (quadratic) polynomials that illustrate the associations 
between the hospital intensity score and average patient outcomes in Figures 2 to 5. In Table 2 we 

                                                            
6 It is noteworthy that we obtain a very high F-statistic. Intuitively, this can be attributed to different behaviors across the 
groups of ‘travelers’ and ‘non-travelers’.  



provide the estimates of the IV-estimates, which test whether the intensity scores have an impact on 
the outcomes of quasi-randomly assigned patients. 

Figure 2: Death rates within 1-year post surgery

 

Figure 3: Reoccurrence rates within 1-year post-surgery 

 



Figure 4: Infection rates (100 days post-surgery) 

 

Figure 5: Patient-% that preserve their breast contour

 

First, Figure 2 does not show a clear relation between a hospital’s intensity score and one-year 
mortality. We also do not find a significant effect of the treatment intensity in Table 2. This is not 
surprising, as, generally speaking, death rates from breast cancer are low.  

Second, Figure 3 shows a downward sloping relation between the intensity score and reoccurrence 
rates. Table 2 shows that a 1-point increase in the average intensity score results in a significantly 
lower 22.2-percentage points, for a patient, to have another surgery within one year (at 1%-level; 
p<0.001). This finding is not surprising, as LUM is associated with higher risk for local reoccurrence 
than MST (Veronesi et al. 2002). 

Third, Figure 4 shows an upward sloping relation between the treatment intensity and infection 
rates. Table 2 reports that a 1-point increase in the average intensity score significantly increases the 
likelihood of having an infection by 12.3-percentage points (at 5%-level; p<0.001). Similarly, also this 
finding is in line with expectations, given that MST is associated with considerably higher infection 
rates than LUM (El-Tamer et al. 2007, Roststein et al. 1992).  

In addition to the outcomes we observe on the patient-level, we include a quality indicator that we 
only observe on the hospital level: the percentage of breast contour maintained across patients. 



Figure 5 shows an U-shaped association between the intensity score and the percentage of 
preserved breast contours. Table 2 shows that a 1-point increase in the average intensity score is 
associated with a significant decrease in the percentage of preserved breast contours (at 1%-level; 
p<0.001). This makes sense, given that increased (over)provision of MST implies more cases of entire 
breast removal, requiring more complex procedures to preserve breast contours (e.g. immediate 
breast reconstruction) (van Bommel et al. 2019). 

Table 2: The quality implications on health outcomes7 

 (A) (B) (C) (D) 
VARIABLES 2nd stage IV   

Death rates 
2nd stage IV 

Reoccurrence rates 
2nd stage IV   

Infection rates 
OLS 

Percentage breast 
contour 

     
Treatment intensity score 
(δ�h,i) 

-0.011 (0.018) -0.222 (0.031) *** 0.123 (0.052) ** -0.605 (0.033) *** 

Constants 0.066 (0.043) -0.031 (0.071) 0.054 (0.127) 1.041 (0.137) *** 
Observations 6255 6255 6255 6255 
R-square 0.028 0.034 0.022 0.146 

Std. errors in parentheses               *** p<0.01, ** p<0.05, * p<0.1          Sample of 6255 patients 
 

Overall, the findings indicate that a quasi-random patient will experience different health outcomes 
depending on the hospital they choose. Therefore, by impacting clinically important patient 
outcomes, provider-driven variation is argued to be unwarranted and lead to suboptimal provision of 
care.  

5.3 Associations with supply-side characteristics 
 
To provide a starting point for distinguishing the supply-side mechanisms underlying treatment 
variation across providers, we explore the extent to which the intensity score associates to supply-
side characteristics that signal to either allocative inefficiencies or comparative advantages. Unlike 
the previous results that infer causality, this section only describes signals based on associations. 

First, while exploring financial incentives, we observe that hospitals paid under prospective budgets, 
relative to budgets with a turnover limit, are associated with an increase in the average intensity 
score of 4-percentage points. In other words, hospitals paid under prospective budgets have a 
relatively higher likelihood to overprovide MST. This is in line with expectations on perverse financial 
incentives, where hospitals may offer MST due to cost cutting incentives, signalling to allocative 
inefficiencies. Note however that under robust standard errors clustered by hospitals, these effects 
are insignificant at a 10%-level.  

Second, the availability of radiotherapy facilities is explored as a source of variation. We find that a 1-
percentage points increase in people in need, that consult a radiotherapist, compared to those that 
do not have access to one, is significantly associated with a decrease in the average intensity score of 
0.3-percentage points. This is in line with expectations, signalling that hospitals with access to 
radiotherapists may have comparative advantages in providing follow-up treatment for LUM and are 
therefore incentivized to offer LUM to a larger share of their patient.  

                                                            
7 Table 2 does not display the first stage of the IV estimation, where the instrument is found to meet all required criteria.  
While the coefficients of patient characteristics 𝑋𝑋𝑖𝑖 are omitted form the table, note that these characteristics are also part 
of the original estimations. 



Lastly, we investigate the availability of plastic surgeons and find that 1 extra plastic surgeon 
employed is insignificantly (at 10%-level) associated with an increase in the average intensity score of 
0.7-percentage points. In contrast to this, we also find that employing 1 extra plastic surgeon is 
negatively associated with both types of overprovision, when assessed separately. Altogether, these 
results indicate that, most likely, the availability of plastic surgeons will not drive provider-driven 
variation. In a less likely case, hospitals with higher numbers of plastic surgeons may have 
comparative advantage in the form of expertise in providing follow-up treatment for MST as this 
surgery type requires the expertise of plastic surgeons during reconstruction. 

 Table 3: Associations with supply-side characteristics  

 

The regression models corresponding to this section are shown in Appendix D. 

6 Sensitivity tests 
 
In this section, we test for the reliability of the previously presented results. Section 6.1 addresses 
uncertainty in the established treatment variation across providers (i.e., the intensity scores). We 
then also run sensitivity tests on the IV-based forecasting analysis. Section 6.2 further analyses 
difficult to prove conditions for establishing an appropriate instrument (i.e., monotonicity). Lastly, 
section 6.3 explores the uncertainty around our forecasting coefficient.  

6.1 Only large hospitals 
 
The first sensitivity test aims to account for the possibility that the variation in intensity scores is 
driven by the imprecise estimates for hospitals that only treat few patients. We limit the analysis to 
hospitals that treat more than 50 patients (N=34). With a restricted sample of hospitals, the original 
outliers, i.e. the scores on the (absolute) ends of the overprovision range, disappear. According to 
expectations, we observe smaller confidence intervals, meaning that the intensity scores across 
hospitals with over 50 patients are surrounded by less uncertainty (see Figure 1). Based on these 
results, we can also confirm that, conditional on a restricted sample of hospitals, there is still 
substantial degree of provider-driven treatment variation.  

6.2 Monotonicity 
 
The monotonicity assumption can be tested for empirically. For it to hold, patients must prefer care 
nearby across all subgroups. In other words, the relation between shortest distance and the 
probability of choosing a hospital should be positive for all observable subgroups of patients (Bakx et 
al., 2018). To test this, we perform the IV estimations on different patient age-subgroups and 
investigate each subgroup’s first-stage estimation parameters. The findings, portrayed in Appendix E, 

Supply-side characteristic Association with provider-
driven variation (𝜹𝜹𝒉𝒉) 

Signal  

Financial incentives (prospective 
budgets) 

Higher likelihood to overprovide 
MST (𝛿𝛿ℎ > 0) 

Allocative inefficiencies? 

Access to radiotherapy facilities Higher likelihood to overprovide 
LUM (𝛿𝛿ℎ < 0) 

Comparative advantages?  

Availability of plastic surgeons Lower likelihood of overprovision 
of any kind  

None 



show a positive relationship across different age sub-groups between the hospital-specific intensity 
score and the distance-based instrument. As a result, we can confirm that monotonicity holds.  

6.3 Bootstrap analysis 
 
In the IV-based forecasting test we have not taken into account that the endogenous variable, the 
hospital-specific intensity score, is an estimate itself and thus surrounded by estimation uncertainty. 
To establish the impact of this uncertainty on the precision of our forecast test, we therefore perform 
a bootstrap analysis (Hastie et al, 2009). We resample from our original patient observations 50 times, 
and each time recalculate the hospital intensity score and perform the forecasting test. The resulting 
50 realizations of the test-coefficient then form our approximation of the coefficient’s distribution. The 
resulting CI is larger, due to the fact that we now take the estimation uncertainty in the intensity score 
into account, but still relatively precise: [0.939, 1.206].  

7. Discussion 
 
In this study, we estimate the case-mix corrected variation in the surgical treatment of breast cancer 
across Dutch hospitals. Using an instrumental variable-based forecasting test, we find that our 
intensity score is able to predict the treatment choice for patients quasi-randomly assigned to a 
hospital. This suggest that, on average, selection based on unobservable does not bias our intensity 
score, meaning that the score captures true provider-driven variation. Next, we find causal evidence 
that treatment variation across hospitals leads to unequal health outcomes for similar random 
patients, confirming that the provider-driven treatment variation established in the context of breast 
cancer is unwarranted. Finally, we find suggestive evidence that the provider-based treatment 
variation is both driven by differences in comparative advantages and source of potential allocative 
inefficiencies.  

The paper contributes to the few studies that account for unobserved patient characteristics in the 
context of breast cancer treatment variation. In contrast to what Basu et al. (2007) find for the U.S. at 
the individual level, we do not find evidence that the observed variation is driven by selection based 
on unobserved characteristics at the provider level. However, these findings do not necessarily 
contradict each other: it may well be that in addition to the observed characteristics, patients also 
include other unobserved factors in their choice for LUM of MST, but that these do not structurally 
differ between hospitals nor steer patients to go to other hospitals. Methodologically, this analysis 
illustrates a novel forecasting-based test (see Angrist et al. 2015, Abaluck et al. 2020) for bias in 
performance measures, which has not been applied widely yet in health care. This test avoids the 
need to account for selection in the estimate for each individual provider, which can be challenging 
especially when the number of patients per provider is limited (see for instance Hull, 2017). A 
disadvantage of this test is that, although we can reject that the intensity score is driven by 
unobserved factors on average, we cannot exclude the possibility that the scores of (some) individual 
hospitals are affected by unobserved factors. 

A second contribution regards the understanding of the health implications from treatment variation 
across providers. We follow the definition of Weinberg which states that differences in treatment 
that lead to different outcomes for similar patients is unwarranted. Using an IV approach we are able 
to establish that indeed similar patients that are (quasi-)randomly assigned to hospitals with a 
different treatment intensity experience different clinically relevant outcomes. An overprovision of 



mastectomy is found to result in significantly higher infection rates, while an overprovision of 
lumpectomy leads to higher reoccurrence rates.  

A third contribution is that we provide suggestive evidence of the sources of provider-based 
variation. Our findings are in line with theory-based expectations and provide a starting point in 
disentangling supply-side sources. Characteristics such as the availability of radiotherapy facilities are 
found associated with lumpectomy overprovision. As radiotherapy (often) follows after a 
lumpectomy, hospitals with appropriate facilities may have a comparative advantage above others in 
the provision of lumpectomy. We also show an association between reimbursement with prospective 
budgets and the overprovision of mastectomy. As mastectomy is the relatively cheaper surgery and 
prospective budgets introduce cost cutting incentives, allocative inefficiencies due to perverse 
financial incentives may be at play.  

A limitation of this study is that we cannot establish the optimal levels of care provision. A score of 0 
does not necessarily indicate best practice (i.e. if all providers perform suboptimal, a score of 0 is still 
suboptimal). Moreover, best practice cannot be (easily) derived from the benefit from treatment, as 
the effects from breast cancer treatment are not unidimensional. To improve this application, first, 
we recommend further research to define ‘welfare’ and ‘best practice’ from a patient’s perspective. 
Second, we encourage the use of a broader set of health outcomes (e.g., body satisfaction, other 
complications post-surgery) to fully capture the expected benefits from treatment and welfare 
implications of treatment variation.  

Finding substantial treatment variation across healthcare providers, that is linked to suboptimal 
provision of care, has implications that extend beyond the case of breast cancer. As a result, policy 
interventions aimed at reducing the unwarranted effects of such variation would be justified. 
However, this paper also shows how the sources and effects of provider-driven treatment variation 
can differ. In the context of breast cancer, it seems that some providers are better suited to treat a 
larger share of their patients with a lumpectomy. Decreasing variation then requires improvement of 
low-skilled providers or reallocation of patients across providers. Some of the variation, however, 
seems to be driven by similar providers treating patients differently. In that case, better guidelines or 
removal of distorting financial incentives is in place. Therefore, the key message is that in order to 
increase quality and patient welfare, generalization of care and the blind reduction of treatment 
variation across providers is not the answer. Instead, researchers and policy makers need to carefully 
consider all sources of treatment variation across providers to prevent misconceptions in defining 
and addressing unwarranted treatment variation. 
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9. Appendices 
 
Appendix A: Descriptive statistics  
Table 1: Descriptive statistics for case mix variables  

                                                            
8 Missing values from FKG/DKGs equal 571 missing observations (indicating patients that were not enrolled at the 
respective Dutch insurer in 2015). We account for them through a dummy (‘FKG/DKG inflow’) that takes the value of 1 for 
those 571 patients without information on disease history, and 0 for those represented by the FKG/DKGs. Subsequently, we 
put the FKG/DKGs previously missing equal to zero – being now accounted for the dummy variable. 
9 Having the sign ‘-’ assigned means that the respective value in the treatment-specific subsamples is equal to the value in 
the full sample. 

Patient characteristics 
 

Full sample (N=6255) Sample with MST 
(N=2737) 

Sample with LUM 
(N=3518) 

 Mean SD Mean SD Mean SD 
Claims-based ‘clinical’ 

information 
   

Age (continuous) 60.654 12.255 61.005 13.379 60.381 11.297 
Frequency rates of patient 

occurrence 
      

Age cohort 20-50  0.186 0.389 0.210 0.406 0.169 0.374 
Age cohort 50-75  0.718 0.450 0.650 0.477 0.770 0.421 

Age cohort 75-100  0.097 0.295 0.140 0.348 0.062 0.241 
       

No FKGs 0.564  0.551  0.574  
No DKGs 0.702  0.689  0.712  

FKG/DKG inflow 8 0.091  0.085  0.096  
       

Socioeconomic Status 
(SES) 

      

Ethnicity (%)       
Western foreigners 0.087 0.041 0.085 0.039 0.089 0.042 

Non-western foreigners 0.100 0.115 0.095 0.106 0.104 0.121 
Dutch inhabitants 0.813 0.138 0.820 0.130 0.808 0.144 
Social benefits (%)       

No scheme 0.804 0.061 -9 - - - 
Scheme 1 (AO) 0.049 0.020 - - - - 
Scheme 2 (BW) 0.038 0.031 - - - - 
Scheme 3 (WW) 0.049 0.015 - - - - 
Scheme 4 (ZW) 0.012 0.005 - - - - 

Missingness indicator 
variable 

0.048 0.214 0.044 0.206 0.051 0.221 

Marital Status (%)       

Divorced 0.073 0.021 - - - - 
Education (%)       
Low educated 0.435 0.122 0.437 0.120 0.433 0.124 

Middle educated 0.338 0.084 0.340 0.120 0.433 0.124 
Highly educated 0.181 0.094 0.181 0.081 0.336 0.086 



Note: The case mix variables represent observed patient characteristics, which are used to develop 
the case-mix corrected measure of treatment variation across providers, introduced in section 4.1. 

Table 2: Descriptive statistics for distance-based instrument  
 

Travel distance 
Full sample (N=6253) Sample with MST 

(N=2737) 
Sample with LUM 

(N=3518) 
 Mean  SD Mean SD Mean SD 

Nearest hospital (in km) 14.71 8.25 15.00 8.49 14.47 8.06 
 Note: ‘Travel distance’ is used to create the instrument for our IV based forecasting test, introduced 
in section 4.2. 

Table 3: Descriptive statistics for outcome measures (quality indicators) 
Health outcome measures 

 
Full sample (N=6255) Sample with MST 

(N=2737) 
Sample with LUM 

(N=3518) 
 Mean  SD Mean SD Mean SD 

Death rates 0.017 0.130 0.022 0.147 0.014 0.116 
Reoccurrence rates 0.073 0.260 0.060 0.237 0.083 0.276 

Infection rates 0.194 0.395 0.234 0.424 0.163 0.369 
Preserved breast contours 

rates 
0.697 0.065 0.691 0.065 0.704 0.064 

Note: Health outcome measures are used in the models introduced in section 4.4. 

 
Table 4: Descriptive statistics for supply-side characteristics   

Supply-side characteristics 
 

Full sample  
(74 hospitals) 

Number of hospitals paid with GB (ref: CCB)10 18 
 

Average number of plastic surgeons per 
hospital 11  

4.56 
 

Patient percentage (in need) that see a 
radiotherapist within 28 days  

76.29 
 

Number of hospitals participating in PROM 
survey12  

32 
 

Note: Supply-side characteristics are used in the models introduced in section 4.3. 

 
 
 

                                                            
10 2 hospitals lack information on reimbursement schemes. 
11 The number of plastic surgeons across hospitals ranges from 0 to 13, with a mean of 4.5 surgeons (and no 
information available for 5 hospitals). 
12 3 hospitals have no information about their conduct in terms of PROM surveys. 

Missingness indicator 
variable 

0.046 0.209 0.042 0.094 0.182 0.094 

Income (euro)       

Mean income  €22.335 €4012,26 €22.299 €4035,29 €22.320 €3994,81 



Appendix B: The case mix model  
 
The probability for surgery with MST relative to LUM is calculated through three different case mix 
corrections, all of which depicted below. Model 3, having the highest pseudo-R-squared, is used in 
the main analysis, as it appears to explain the differences in treatment choice best. The model 
estimates of model 3 are discussed in section 5.1.  

 (1) (2) (3) 
VARIABLES 
 
 
 
 
 
 

Logistic regression 
with case mix 

correction for age 
(and gender)  

 
 

Treatment 

Logistic regression 
with case mix 

correction for age 
(and gender) and 

disease history  
 

Treatment 

Logistic regression 
with case mix 

correction for age (and 
gender), disease 

history and SES factors 
 

Treatment 
Patient characteristics 
Age variable 

Young 
Middle  

 
 

-0.618 (0.103) *** 
-0.998 (0.09) *** 

 
 

-0.612 (0.109) *** 
-1.012 (0.093) *** 

 
 

-0.611 (0.109) *** 
-1.01 (0.093) *** 

Old (ref)  - - - 
Disease history (29 
FKGs13) 

Depression 
Epilepsy 
Rheumatism 
Diabetes 
Psoriasis 
Crohn disease 

 
 

 
0.222 (0.121) * 

0.879 (0.341) *** 
0.595 (0.296) ** 
0.283 (0.161) * 
0.961 (0.507) * 
-0.998 (0.531) * 

 
0.225 (0.121) * 

0.894 (0.342) *** 
0.612 (0.297) ** 
0.285 (0.162) * 
0.944 (0.509) * 
-0.976 (0.531) * 

 
 

No disease history 
(ref) 

 - - 

History of medical 
expenditures (15 DKGs14) 

DKG 1 
DKG 5 
DKG 9 
DKG 11 

 
 

 
 

0.461 (0.124) *** 
-0.635 (0.27) ** 

0.876 (0.246) *** 
0.73 (0.417) * 

 
 

0.459 (0.125) *** 
-0.632 (0.270) ** 
0.876 (0.246) *** 

0.784 (0.418) * 
DKG 0 (none/ ref) 

FKG/ DKG inflow 15  
 
  

 - 
-0.014 (0.093) 

- 
-0.014 (0.093) 

SES characteristics 
Ethnicity 

Western 
Non-western 
Dutch (ref) 

Marital status 
Divorcee 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

-1.768 (0.988) * 
-0.778 (0.427) * 

- 
 

33.1 (23.62)  
                                                            
13 Out of 29 chronic diseases, represented by FKGs, only the above 6 were found to have a significant effect. 
14 Out of 15 diagnoses (based on medical expenditures) only the significant ones are mentioned. 
15 This variable accounts for the effect from those that lack information on disease history. 



Divorced status 
Non-divorced (ref) 
 

Social security 
Scheme 1 
Scheme 2 
Scheme 3 
Scheme 4 
No scheme (ref) 
Missingness 
dummy 

Education 
Low educated 
Middle educated 
High educated 
(ref) 
Missingness 
dummy 

 
Average income 

 
 
Constant 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

0.579 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

0.522 

-3.115 (2.082)  
- 
 
 

1.993 (1.966) 
-2.754 (4.4) 

2.205 (12.424) 
1.74 (2.467) 

- 
-0.138 (0.509) 

 
 

-0.172 (0.549) 
-0.103 (0.873) 

- 
 

-0.138 (0.509) 
 
 

0.00009 (0.000012)  
 
 

0.722 
    
Observations 6255 6255 6255 
AIC  
Pseudo-R square 
 
Intensity range 16 
 

8432.43 
0.0228 

 
(-0.397; 0.538) 

8432.43 
0.0371 

 
(-0.383; 0.539) 

8432.43 
0.0409 

 
(-0.351; 0.558) 

Std. errors in parentheses            *** p<0.01, ** p<0.05, * p<0.1      Sample of 6255 patients 
 
 

Appendix C: The second stage IV estimates  
 

The results from the forecasting IV test are discussed in depth in section 5.2. The full IV model and 
respective estimates can be found below.  

  
VARIABLES Second stage of 2SLS  

 
Treatment choice (𝑇𝑇𝑖𝑖) 

 
Treatment intensity score (𝛿̂𝛿ℎ,𝑖𝑖) 
 
Age variable 

Young 
Middle  

 
1.045 (0.061) *** 

 
 

-0.166 (0.061) *** 
-0.25 (0.024) *** 

Old (reference) - 
                                                            
16 These estimates represent the ranges of “hospital-specific treatment intensity scores” across 84 hospitals. 



Ethnicity 
Western  
Non-western 

 
-0.339 (0.217)  
-0.032 (0.094)  

Dutch (reference) - 
Marital status 

Divorcee 
 

1.94 (5.29)  
Divorced status 
Non-divorced (reference) 

-0.76 (0.435) * 
- 

Social security 
Scheme 1 (Bijstand) 
Scheme 2 (WW) 
Scheme 3 (Ziektewet) 
Scheme 4 (AO) 
Not falling under scheme (reference) 

 
0.124 (0.435)  
0.639 (0.981)  
-1.774 (2.768) 
0.31 (0.551) 

- 
Missingness social security -0.019 (0.056) 

Education 
Low educated 
Middle educated 
High educated (reference) 

 
-0.051 (0.122) 
-0.031 (0.194)  

- 
Missingness education 

 
Average income 

-0.063 (0.113) 
 

1.252 (2.661) 
Disease history (29 FKGs17) 

Depression 
Epilepsy 
Rheumatism 
Diabetes 
Arterial hypertension 
Crohn disease 

 
0.060 (0.027) ** 

0.222 (0.073) *** 
0.133 (0.066) ** 
0.185 (0.109) * 
0.639 (0.331) * 

-0.236 (0.104) ** 
No disease history (reference) - 

History of medical expenditures (15 DKGs18) 
DKG 1 
DKG 5 
DKG 9 
DKG 11 
DKG 15  

 
0.095 (0.028) *** 
-0.113 (0.056) ** 
0.216 (0.054) *** 
0.234 (0.0933) ** 
0.084 (0.424) **  

No history with medical expenditures 
 

FKG/ DKG inflow 
Year fixed effects 

2016 
2017 
2018 (reference)  

- 
 

-0.0054 (0.0209)  
 

0.041 (0.015) *** 
0.025 (0.014) ** 

- 
Constant 0.669 (0.147) *** 
  
Observations 6255 
R-square 0.0885 

 
Std. errors in parentheses            *** p<0.01, ** p<0.05, * p<0.1      Sample of 6255 patients 

                                                            
17 Only the significant FKG’s are mentioned. 
18 Only the significant DKG’s mentioned. 



Appendix D: Associations with supply-side characteristics 
 
The associations between supply-side characteristics and the intensity score are discussed in depth in 
section 5.3. The respective model estimates can be found below.  

 (A) (B)  (C) 
VARIABLES OLS regression  

Treatment intensity 
score 

[range -1 and 1] 

OLS regression 
Propensity towards 

lumpectomy, conditionally 
on case mix characteristics 

(absolute value)  

OLS regression 
Propensity towards 

mastectomy, conditionally 
on case mix characteristics 

(absolute value) 
Reimbursement  

Prospective 
budget 

 
0.040 (0.056)  

 
-0.014 (0.021)  

 
0.026 (0.043)  

Budget with 
turnover limit 
(ref) 

 

- - - 

Number of plastic 
surgeons 

0.007 (0.015)  -0.009 (0.005)  -0.001 (0.011) 

Participation in PROM 
survey 

YES  
NO (ref) 

 
 

-0.078 (0.015)  

 
 

0.021 (0.02)  

 
 

-0.056 (0.042)  
 

Patients (in need) that 
see a radiotherapist 
within 28 days (%) 

 

-0.003 (0.001) *** 0.001 (0.0004) *** -0.002 (0.0007) ** 

Constant 0.203 (0.13) 0.207 (0.008)  0.207 (0.104)  
    
Observations 1771 1771 1771 
R-square 0.1712 0.1513 0.1269 

Std. errors in parentheses            *** p<0.01, ** p<0.05, * p<0.1      Sample of 1771 patients 
 
 

 

 

 

 

 

 

 

 

 

 



Appendix E: Monotonicity test  
 
The monotonicity test is performed based on the first stage (2SLS) estimates on sub-sample of 
respectively, young, middle, and old patients. The model estimates, further elaborated in sensitivity 
analysis 6.2, are shown below. 
 

    
VARIABLES First stage of 2SLS 

 
Young patient sample 

 
Hospital-specific 

treatment intensity (𝛿̂𝛿ℎ,𝑖𝑖) 

First stage of 2SLS 
 

Middle patient sample 
 

Hospital-specific 

treatment intensity (𝛿̂𝛿ℎ,𝑖𝑖) 

First stage of 2SLS 
 

Old patient sample 
 

Hospital-specific 

treatment intensity (𝛿̂𝛿ℎ,𝑖𝑖) 
 
Hospital-specific treatment 
intensity of the nearest 
hospital (𝛿̂𝛿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 
 

 
0.450 (0.031) *** 

  

 
0.532 (0.015) *** 

 

 
0.535 (0.041) *** 

 

 
  

Constant -0.277 (0.119) -0.251 (0.051) -0.517 (0.181) 

Observations 1162 4487 604 
R-square 
Partial F-statistic 
(instrument)  

0.314 
216.57  

0.366 
1340.58 

 

0.439 
166.78 

 
Std. errors in parentheses          *** p<0.01, ** p<0.05, * p<0.1      Sample of 1162 (young), 4487 (middle), 604 (old) patients 
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