Long-Term Impact of Malnutrition on Education Outcomes for Children in Rural Tanzania

Lucia Luzi, PhD UNICEF IRC <u>lucia.luzi@unive.it</u>, <u>lluzi@unicef.org</u>

> 2nd IRDES Workshop on Applied Health Economics and Policy Evaluation

> > June 23-24th 2011, Paris

<u>ahepe@irdes.fr</u> - www.irdes.fr

Outline

- Research question
- Motivations and contributions
- The econometric problem
- Results
- Final considerations and policy implications

- **Key words**: Primary education, child health and nutrition, weather shocks, family fixed effects, instrumental variables, Tanzania.
- **JEL classification**: I0

Research question

What are the effects of early childhood malnutrition on subsequent educational attainment in rural Tanzania?

Motivations

- According to medical research the first 3 years of life are crucial for individual development.
- n Exogenous shocks may cause permanent damage to children.
- n Chronic malnutrition receives less policy attention than severe malnutrition, though prevalent in poor countries.

Contributions

- **n** This study:
 - extends the literature on the determinants of human capital formation in developing countries;
 - q measures the impact of shocks at the individual level;
 - q reveals aspects similar to other sub-Saharan African countries.

Kagera Health & Development Survey

n Dataset:

- q Kagera Health and Development Survey (LSMS)
- **q** Conducted by the World Bank, Muhimbili University College of Health Sciences and University of Dar es Salaam.
- **Periods:** 4 times 1991-1994 (KHDS I)

+ 1 time 2004 (KHDS II)

Population: 915 hh drawn from 51 communities of 16 hh each in the 6 administrative districts of Kagera.

n Advantages:

- q it is one of the few surveys that has data over such a long period;
- **q** it has a low attrition rate of 9,6%;
- **q** it particularly appropriate for the analysis.

Kagera Region, Tanzania. KHDS clusters' location.

The population was 1.3 mln in 1988, and about 2 mln in 2004. It is overwhelmingly rural and primarily engaged in producing bananas and coffee in the northern districts and rain-fed annual crops (maize, sorghum, cotton) in the southern districts.

Literature

- n This study follows previous elaborations made by:
 - **q** Glewwe, Jacoby and King (2001)
 - **q** Alderman, Behrman, Lavy and Menon (2001)
 - **q** Alderman, Hoddinott and Kinsey (2006)
 - **q** Glewwe and Miguel (2008)

The econometric model

- Two time periods model:
 - □ t=1 the individual is a newborn or a preschooler (KHDS I)
 - □ t=2 the individual is an adolescent or a young adult (KHDS II)
- In each period parents make decisions on child's human capital investments, but those in t=1 are the most important with longterm effects.

The econometric model

The structural form:

$$S_{i2} = a_H f(H_{i1}) + a_{C2} g(C_{i2}) + \varepsilon_{i2}$$
(1)

- *i* is the identification for the child
- S_{i2} is the educational outcome of the child i at t=2
- $f(H_{i1})$ is a function of health status of the child i at t=1
- C_{i2} is a vector of individual, hh and community characteristics that influence academic performance
- ε_{i2} is the individual specific disturbance term that affects the educational outcome of interest

The econometric model

The reduced form:

$$H_{i1} = a_{C1}g(C_{i1}) + \varepsilon_{i1}$$
 (2)

- H_{i1} is the health status of the child i at t=1
- C_{i1} is a vector of individual, hh and community characteristics that influence investment in health
- ε_{i1} is the individual specific disturbance term that affects the health status

Endogeneity problem

n OLS method can produce biased estimates since it:

- **q** requires the availability of complete data on all the right hand var. in eq.(1), while some factors are unobserved;
- **q** assumes that H_{i1} is exogenous (pre-determinate), while it is endogenous and probably correlated with ε_{i2} : $E(H_{i1} \varepsilon_{i2}) \neq 0$. This can be caused by possible correlations of individual or hh effects, unobservable by the data analyst.

in performing such analysis an **endogeneity problem** exists.

Tackling the endogeneity problem

- 1. The **within-sibling** approach (FFE) purges any hh and environment inputs (both observed and unobserved) that are constant across siblings.
- 2. The **instrumental variable** approach (IV) purges any unobserved correlations of individual effects.

 H_{i1} is first estimated using IV_{i1} and then S_{i2} is estimated using \hat{H}_{i1} from the first stage.

Weather shock as IV

- $IV = R_{i1}$: weather shock at location and time of birth for each child. The shock takes place after parents have made decisions for that time period.
- As IV, R_{i1} is:
 - of adequate magnitude and persistence to affect H_{i1}
 - adequately variable across siblings in the same hh
 - adequately transitory not to affect H_{k1}
 - not correlated with S_{i2}
- R_{i1} satisfy the two conditions of:
 - 1. Instrument relevance: $cov(R_{i1}, H_{i1}) \neq 0$
 - 2. Instrument exogeneity: $cov(R_{i1}, \varepsilon_{i2})=0$

Variables and measures

- **n** The suitable sample for the analysis is constituted by children with available information on:
 - **q** H_{i1} measured by height-for-age
 - A low height-for-age z-score defines "stunting", which indicates chronic malnutrition
 - **q** S_{i2} measured by completion of the entire cycle of primary education
 - **q** R_{i1} measured by rainfall at location and time of birth

Table 1: Descriptive statistics on children in KHDS '91-'94

Variable	Obs	Mean	Std. Dev.
Height-for-age z-score	622	-1.65	1.50
Stunted	622	0.70	0.46
Age (in months)	622	32.58	24.87
Gender (female)	622	0.46	0.50

Table 2: Heath status of children in KHDS '91-'94

Variable	Ger	Gender Residence		Total	
variable	Female	Male	Urban	Rural	Total
Height-for-age z- score<-1 SD	64.93%	74.85%	66.46	71.55	70.26%
Height-for-age z- score<-2 SD	31.94%	47.31%	32.91	42.67	40.19%

Figure 1: Height-for-age z-scores for pre-schoolers in KHDS '91-'04, by age expressed in months

Figure 2: Health status (stunting) for children under-5 years old in Tanzania, in months, '91-'99

Table 3: Sub-samples of children removing one district in turn

	All districts but 1	All districts but 2	All districts but 3	All districts but 4	All districts but 5	All districts but 6	All districts but 1 & 5
Gender (female)	-0.0243	0.00398	0.0245	0.0314	0.0196	0.0274	-0.0212
	(0.046)	(0.044)	(0.047)	(0.039)	(0.039)	(0.041)	(0.047)
Age in adolescence	0.124***	0.123***	0.114***	0.116***	0.123***	0.100***	0.129***
(in months)	(0.013)	(0.017)	(0.018)	(0.013)	(0.012)	(0.014)	(0.012)
Height-for-age z-	0.111*	0.118	0.0701	0.0373	0.0988*	0.0232	0.125**
score	(0.062)	(0.081)	(0.10)	(0.065)	(0.051)	(0.063)	(0.051)
Observations	515	447	517	572	557	502	45 0
Number of hh	199	168	198	223	212	190	173
R-squared	0.37	0.33	0.38	0.43	0.37	0.38	0.36

Notes:

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors for all the estimates are robust to clustered (village) sample design. FFE-IV are estimated using a linear probability model. District n.1 is Karagwe; district n.2 is Bukoba Rural; district n.3 is Muleba; district n.4 is Biharamulu; district n.5 is Ngara; district n.6 is Bukoba Urban.

Table 3: Sub-samples of children removing one district in turn

	All districts but 1	All districts but 2	All districts but 3	All districts but 4	All districts but 5	All districts but 6	All districts but 1 & 5
Gender (female)	-0.0243	0.00398	0.0245	0.0314	0.0196	0.0274	-0.0212
	(0.046)	(0.044)	(0.047)	(0.039)	(0.039)	(0.041)	(0.047)
Age in adolescence	0.124***	0.123***	0.114***	0.116***	0.123***	0.100***	0.129***
(in months)	(0.013)	(0.017)	(0.018)	(0.013)	(0.012)	(0.014)	(0.012)
Height-for-age z-	0.111*	0.118	0.0701	0.0373	0.0988*	0.0232	0.125**
score	(0.062)	(0.081)	(0.10)	(0.065)	(0.051)	(0.063)	(0.051)
Observations	515	447	517	572	557	502	45 0
Number of hh	199	168	198	223	212	190	173
R-squared	0.37	0.33	0.38	0.43	0.37	0.38	0.36

Notes:

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors for all the estimates are robust to clustered (village) sample design. FFE-IV are estimated using a linear probability model. District n.1 is Karagwe; district n.2 is Bukoba Rural; district n.3 is Muleba; district n.4 is Biharamulu; district n.5 is Ngara; district n.6 is Bukoba Urban. Plausible reasons for statistically significant height-for-age in the selected sub-sample

- **n** Karagwe (district n.1) and Ngara (district n.5):
 - **q** have the worst health performance on average;
 - **q** are the driest areas, located far from Lake Victoria;
 - were the primary asylum for the refugees from Burundi and Rwanda genocides to escape ethnic violence during the early '90, with consequent damages.

Table 4: First-stage within siblings regression (sub-sample)

Estimation Approach	Instrumental Variables	Family Fixed Effects - Instrumental Variables (3)
Gender (female)	0.423***	0.452***
	(0.14)	(0.16)
Age in adolescence (in months)	-0.121***	-0.126***
	(0.030)	(0.034)
Rainfall in z-score	0.812***	1.572***
	(0.27)	(0.29)
Constant	0.0384	
	(0.46)	
Observations	450	450
Number of hh		173
R-squared	0.09	0.18

Notes:

1. Robust standard errors in parentheses. * Significant at 10%; ** Significant at 5%; *** Significant at 1%

2. Standard errors for all the estimates are robust to clustered (village) sample design.

3. "Family Fixed Effects - Instrumental Variables" are estimated using a linear probability model

Table 4: First-stage within siblings regression (sub-sample)

Estimation Approach	Instrumental Variables	Family Fixed Effects - Instrumental Variables (3)
Gender (female)	0.423***	0.452***
	(0.14)	(0.16)
Age in adolescence (in months)	-0.121***	-0.126***
	(0.030)	(0.034)
Rainfall in z-score	0.812***	1.572***
	(0.27)	(0.29)
Constant	0.0384	
	(0.46)	
Observations	450	450
Number of hh		173
R-squared	0.09	0.18

Notes:

1. Robust standard errors in parentheses. * Significant at 10%; ** Significant at 5%; *** Significant at 1%

2. Standard errors for all the estimates are robust to clustered (village) sample design.

3. "Family Fixed Effects - Instrumental Variables" are estimated using a linear probability model

Table 5: Estimates of the education achievement equation for siblings (sub-sample)

Estimation Approach	OLS (1)	FFE-IV(2)	FFE-IV(3)	OLS (4)	FFE-IV(5)
Gender (female)	0.0171	-0.0212	-0.154*	-0.0360	-0.152*
	(0.031)	(0.047)	(0.080)	(0.044)	(0.079)
Age in adolescence	0.117***	0.129***	0.145***	0.109***	0.143***
(in months)	(0.0072)	(0.012)	(0.030)	(0.013)	(0.030)
Height-for-age	0.0451***	0.125**	0.192*	0.0271	0.189*
z-score	(0.011)	(0.051)	(0.10)	(0.020)	(0.10)
Constant	-1.403***			-0.946	
	(0.091)			(0.80)	
Controls	No	No	No	Yes	Yes
Observations	45 0	450	254	254	254
Number of hh		173	102		102
R-squared	0.38	0.36	0.16	0.34	0.18

Notes:

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors for all the estimates are robust to clustered (village) sample design. FFE-IV are estimated using a linear probability model. Controls at individual, hh and community level (OLS) – Dummy for vaccine only (FFE-IV). (3) represents the analysis on sample (4) and (5) without controls.

Table 5: Estimates of the education achievement equation for siblings (sub-sample)

Estimation Approach	OLS (1)	FFE-IV(2)	FFE-IV(3)	OLS (4)	FFE-IV(5)
Gender (female)	0.0171	-0.0212	-0.154*	-0.0360	-0.152*
	(0.031)	(0.047)	(0.080)	(0.044)	(0.079)
Age in adolescence	0.117***	0.129***	0.145***	0.109***	0.143***
(in months)	(0.0072)	(0.012)	(0.030)	(0.013)	(0.030)
Height-for-age	0.0451***	0.125**	0.192*	0.0271	0.189*
z-score	(0.011)	(0.051)	(0.10)	(0.020)	(0.10)
Constant	-1.403***			-0.946	
	(0.091)			(0.80)	
Controls	No	No	No	Yes	Yes
Observations	45 0	45 0	254	254	254
Number of hh		173	102		102
R-squared	0.38	0.36	0.16	0.34	0.18

Notes:

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors for all the estimates are robust to clustered (village) sample design. FFE-IV are estimated using a linear probability model. Controls at individual, hh and community level (OLS) – Dummy for vaccine only (FFE-IV). (3) represents the analysis on sample (4) and (5) without controls.

Results and Final Considerations

- **n** Applying the FFE IV approach, a Tanzanian child in good health status during infancy has almost an additional 28% probability (=0.189*average H_{i1}) of completing primary education.
- Policy implications: Investing in education and health is critical for the future; hence, it should be a priority for governments and policy makers.
- n Improvements in health status and primary education are not competing goals, but mutually reinforcing.
- Long-run effects of early-life conditions on schooling should be factored into cost-benefit analyses of government programs.

Thank you for your kind attention!

