

Mediating role of education and lifestyles in the relationship between early-life conditions and health: *Evidence from the 1958 British cohort*

2nd IRDES Workshop on Applied Health Economics and Policy Evaluation June 23-24th 2011, Paris ahepe@irdes.fr – www.irdes.fr

Sandy TUBEUF

(s.tubeuf@leeds.ac.uk)

Academic Unit of Health Economics, University of Leeds

Florence JUSOT

LEDA-LEGOS-Université Paris-Dauphine, IRDES

Damien BRICARD

LEDA-LEGOS-Université Paris-Dauphine

Introduction (1)

Numerous studies agreed on various determinants of health inequalities:

• Current social status (income, education level, wealth, occupation ...)

e.g. van Doorslaer & Koolman 2004; Cutler et al. 2006; Lantz et al. 2010

 Early-life conditions (social background, parental SES/health/lifestyles, childhood health,...)

e.g. Anda et al. 2002; Currie and Stabile 2003; Case et al. 2005; Lindeboom et al. 2009; Rosa-Dias 2009; Jusot et al. 2010; Gohlmann et al. 2010; Trannoy et al. 2010

But the role played by individual lifestyles is more controversial:

• Epidemiological literature:

"Lifestyles make a relatively minor contribution to the social gradient in health"

e.g. Khang et al. 2009; Lantz et al. 2010; Skalická et al. 2009; van Oort et al. 2005

"The impact of lifestyles on health disparities would be larger than it was previously estimated" e.g. Laaksonen et al 2008; Menvielle et al 2009; Strand & Tverdal 2004; Stringhini et al 2010;

Health economics:

"Differences in lifestyles can explain a relevant part of health and mortality inequalities"

e.g. Contoyannis and Jones 2004; Häkkinen et al. 2006; Balia and Jones 2008

Introduction (2)

UNIVERSITY OF LEEDS

The design of public policies tackling health inequalities requires to know:

- The determinants of health inequality
- Their respective contribution to the magnitude of health inequality

Because public policies will differ with the determinants found to be important:

- Tackling inequalities related to social determinants
 - Interventions in housing or working environment
- Tackling risky <u>lifestyles</u>
 - Interventions aimed at the whole population: increasing prices
 - Measures targeting the most vulnerable and disadvantaged groups such as minimum age or health promotion interventions

Introduction (3)

Moreover in philosophical literature on social justice :

- "some types of inequality are more objectionable than others"

e.g. Dworkin 1981; Cohen 1989; Arneson 1989; Roemer 1998; Fleurbaey 2008

- Inequality linked to factors for which the individual is not responsible are considered as *"illegitimate"* differences in outcomes :
 - <u>Circumstances</u>, so called inequalities of opportunity
 - Inequality linked to factors for which the individual is responsible are considered as *"legitimate"* differences in outcomes
 - Effort
- Among the determinants of health inequality,
 - Early-life conditions would represent <u>circumstances</u> (illegitimate source of inequality)
 - But what about social status and lifestyles ?

Introduction (4)

Lifestyles and social status might reflect

• Social reproduction, copying behaviours, inherited preferences: Constraints over the life cycle

<u>But also</u>

Preferences, free choice, will, tastes: Individual effort

<u>Therefore</u> underlying public policy becomes less obvious and more complicated:

- Early-life conditions, current social status and lifestyles cannot be considered independent
- What are the early-life conditions to compensate (Principle of compensation in Equality of Opportunity theory)?

1. To explore the long-term effects of early-life conditions, education and lifestyles on health

2. To investigate the effect of each determinant in overall health inequality

3. To understand the interdependence between early-life conditions, education and lifestyles

4. To determine whether early-life conditions influence health directly or indirectly, that is via affecting lifestyles and education

Data - cohort

Data

National Child Development Study (NCDS) : a longitudinal study with all the people born in one week in March 1958 in England, Scotland and Wales

Year	1958	1965	1969	1974	1981	1991	1999/00	2004
Cohort member age	Birth	7	11	16	23	33	42	46
Cross-sectional original sample	17,416 15,051 14,757 13,917		12,044	10,986	10,979	9,175		
	Early life conditions				<i>t=0</i>	<i>t=1</i>	<i>t</i> =2	<i>t=3</i>
Unbalanced selected sample					7,874	6,956	6,999	5,990
Balanced selected sample						4,4	80	
	Parent's data Child health			Coho H	r t memb ealth, life Educati	e r's data estyles on	l	

- <u>Attrition:</u>
 - Attrition in the NCDS is not related to social status (Case et al. 2005)
 - Modest correlation between attrition and employment status (Lindeboom et al. 2006)

Variables (1)

- Measurement of health / outcome of interest:
 - <u>Self-assessed health</u>: 4 or 5-point categorical scale ranging from Poor (age 23, 33, 45) or Very poor (age 46) to Excellent health (all waves)
 - Used as a <u>binary variable</u> : 1 if health rated as good or higher, and 0 otherwise.

	Age 23	Age 33	Age 42	Age 46
	t=0	<i>t</i> =1	<i>t</i> =2	<i>t</i> =3
Excellent	45.85%	35.51%	31.54%	32.08%
Good	46.88%	53.21%	53.19%	46.21%
Good health	92.72%	88.73%	84.73%	78.28%
Fair	6.70%	10.09%	12.77%	14.98%
Poor	0.58%	1.18%	2.50%	5.07%
Very poor				1.67%
Poor health	7.28%	11.27%	15.27%	21.72%

Variables (2)

- Measurement of early-life conditions
 - Social background
 - Father's social class at the time of birth (3 categories + no male figure)
 - Father and mother's education (dropped out from school before or at minimum schooling age)
 - Report of financial hardships (age 16)
 - Parents' health and lifestyles
 - Parental report of chronic illness (age 16)
 - Parents' smoking (age 16)
 - Childhood health
 - Report of chronic condition (age 16)
 - Low birth weight (<2,5 kg)
 - Obesity status (age 16)

Variables (3)

- Measurement of <u>education</u> (discrete outcome)
 - We assume that education level is a reliable proxy of other social outcomes (employment, housing, income, etc.)
 - > Highest qualification achieved over the period
 - lower than O-level; O-level or A-level; higher than A-level
- Measurement of <u>lifestyles</u> (binary outcome)
 - <u>Exercising</u>: cohort member is regularly doing exercise or sports (at least once in the last 4 weeks)
 - <u>Non smoking</u>: cohort member is not a current smoker at wave t
 - <u>Drinking prudently</u>: the # of units of alcohol drinks taken the week before the interview (gender-specific)
 - <u>Absence of obesity</u>: BMI strictly lower than 30

Estimation strategy (1)

Let us assume that individual health status *H* can be written using the following health production function:

$$H = f(C, D, E, L, u)$$

 $u = \omega_i + \mathcal{E}_{it}$

 ω_i unobserved individual characteristics (e.g. genetics, personality traits)

 \mathcal{E}_{it} time variant individual specific error term

- Lifestyles introduced as <u>lagged variables</u>:
 - influence health at the next period / potential reverse causality if contemporaneous
- \mathcal{O}_i may be correlated with lifestyles at each wave:
 - A <u>random effect Probit specification</u> allowing \mathcal{O}_i and \mathcal{E}_{it} to be correlated introducing a vector of average individual past variables (Mundlak, 1978)
 - Therefore a measure of transitory effects and a measure of long-term or permanent effects on health

Estimation strategy (2)

- Furthermore we need to distinguish between ω_i and past health:
 - a lagged dependent variable in the model $H_{i,t-1}$
 - Captures state dependence in health reports
 - Reduces the impact of individual heterogeneity
- The initial health is likely not to be randomly assigned and correlated with ω_i
 - The initial conditions problem (Wooldridge, 2005): $m{H}_{i0}$

Concretely the latent health model that we estimate can be written as follows:

$$H_{it}^{*} = \alpha_{1}C_{i} + \alpha_{2}D_{i} + \beta_{1}E_{i} + \delta_{1}L_{it-1} + \delta_{2}\overline{L}_{i} + \gamma_{1}H_{it-1} + \gamma_{2}H_{i0} + \omega_{i} + \varepsilon_{it}$$

Some base estimates in the paper:

• Model 1: a static model / Model 2: introduction of average past lifestyles / Model 3: a dynamic model

Measurement of inequality

- An inequality index decomposable by sources : natural decomposition of the variance (Shorrocks, 1982)
- In a non linear context, H_{it}^* can only be measured as a prediction
- We use the pseudo R² (McKelvey and Zavoina 1975) in order to measure the share of variance explained by the K variables having an associated coefficient η_k

$$\hat{H}_{it}^* = \sum \eta_k X_{it}^k$$
$$R^2 = \frac{V(\hat{H}^*)}{V(\hat{H}^*) + \sigma_{\sigma} + 1}$$

- \mathcal{O}_i and \mathcal{E}_{it} are defined as independent of the set of K explanatory variables:
 - a variance estimated from the data is attributed to ω_i
 - a variance normalised to be equal to 1 is attributed to \mathcal{E}_{it} (case of a Probit)

As many sources of inequalities in health as regressors (additive index)

Mediating effect identification (1)

To help design public policies we need to understand interdependent relationships:

1. Baseline specification

$$H_{it}^{*} = \alpha_{1}C_{i} + \alpha_{2}D_{i} + \beta_{1}E_{i} + \delta_{1}L_{it-1} + \delta_{2}L_{i} + \gamma_{1}H_{it-1} + \gamma_{2}H_{i0} + \omega_{i} + \varepsilon_{it}$$

Potential mediated effects between early-conditions and health via adult lifestyles and education.

$$E_i = \theta_1^a C_i + \theta_2^a D_i + e_i$$
$$L_{it} = \theta_1^b C_i + \theta_2^b D_i + \theta_3^b E_i + l_{it}$$
$$\overline{L}_i = \theta_1^c C_i + \theta_2^c D_i + \theta_3^c E_i + \overline{l}_i$$

Mediating effect specification (2)

To estimate mediating effect: (Bernt-Karlson et al. (2010))

- 1. Estimating the corresponding residual in each auxiliary equation (LPM)
- 2. Including the residuals in the health production function instead of the original variables

$$H_{it}^{*} = \alpha_{1}^{2}C_{i} + \alpha_{2}^{2}D_{i} + \beta_{1}^{2}\hat{e}_{i} + \delta_{1}^{2}\hat{l}_{it-1} + \delta_{2}^{2}\hat{l}_{i} + \gamma_{1}^{2}H_{it-1} + \gamma_{2}^{2}H_{i1} + \omega_{i} + \varepsilon_{it}$$

3. In the case of linear auxiliary equation estimates (not exact if probit, and generalised residuals), we can rewrite the baseline equation and obtain:

$$\alpha_{1}^{2} = \alpha_{1} + \beta_{1} \cdot \theta_{1}^{a} + \delta_{1} \cdot \theta_{1}^{b} + \delta_{2} \cdot \theta_{1}^{c} \qquad \qquad \delta_{1}^{2} = \delta_{1}$$

$$\alpha_{2}^{2} = \alpha_{2} + \beta_{1} \cdot \theta_{2}^{a} + \delta_{1} \cdot \theta_{2}^{b} + \delta_{2} \cdot \theta_{2}^{c} \qquad \qquad \delta_{2}^{2} = \delta_{2}$$

$$\beta_{1}^{2} = \beta_{1} + \dots \cdot \delta_{1} \cdot \theta_{3}^{b} + \delta_{2} \cdot \theta_{3}^{c}$$

Results – baseline model

We wish here and the Description						
Variables Baselin	e model					
Gender Male	0,031					
Fathers' social class (Ref.: I and II)						
III	-0,073					
IV and V	(-0,208 **)					
No male head	0,377 ***					
Financial hardship (Ref.: None)						
Yes	-0,252 ***					
Non response	0,118					
Father's education (Ref.: beyond the min age)						
Before or at min age	-0,045					
Mother's education (Ref.: beyond the min-age)						
Before or at min age	-0,146 **					
Parental illness (Ref.: None)						
Father's illness	-0,171 **					
Mother's illness	-0,121					
Parental smoking (Ref.: None)						
Father's smoking	0,072					
Non response	-0,012					
Mother's smoking	-0,076 *					
Non response	-0,068					
Chronic condition at 16 (Ref.: None)						
Yes	-0,012					
Non response	0,127					
Low birth weight	-0,079					
Obesity at 16 (Ref.: Yes)	<i>`</i>					
No	-0,307 *					
Non response	-0,166					

Variables	Baseline model
Educational level (Ref.: Hig	her tha n A-l eyel)
Before O-level	-0,207 ***
O-level or A-level	-0,032
Lifestyles (lagged)	
Exercising	-0,042
No smoking	0,072
Drinking prudently	0,033
No obesity	-0,052
Mean lifestyles	
Exercising	0,566 ***
No smoking	0,226 **
Drinking prudently	0,222 *
No obesity	0,760 ***
Lagged health status	0,311 ***
Health status at 23	1,007 ***
Time dummies (Ref.: t=3)	
t=1	0,579 ***
t=2	0,341 ***
V(H [∧] *)	0,360
σ_ω	0,639
ρ#	0,390
R ² (McKelvey and Zavoina)	0,180

Results- comparisons with mediated model

UNIVERSITY OF LEEDS

Variables	Baseline model	Mediated model	Variables	Baseline model	Mediated model
Gender Male	0,031	0,081 *	Educational level (Ref.: High	ner than A-level)	
Fathers' social cla	ss (Ref.: I and II)		Before O-level	-0,207 ***	-0,404 ***
III	-0,073	-0,104	O-level or A-level	-0,032	-0,108 **
IV and V	-0,208 **	-0,280 ***	Lifestyles (lagged)		
No male head	-0,377 ***	-0,463 ***	Exercising	0.042	0.042
Financial hardshi	p (Ref.: N one)		Ne averalize	-0,042	-0,042
Yes	-0,252 ***	-0,348 ***	No smoking	0,072	0,072
Non response	0,118	0,063	Drinking prudently	0,033	0,033
Father's education	n (Ref.: beyond the	min age)	No obesity	-0,052	-0,052
Before or at min ag	ge -0,045	-0,093	Mean lifestyles		
Mother's educatio	on (Ref.: beyond the	e min age)	Exercising	0,566 ***	0,566 ***
Before or at min ag	ge	-0,199 ***	No smoking	0,226 **	0,226 **
Parental illness (R	Ref.: None)		Drinking prudently	0,222 *	0,222 *
Father's illness	-0,171 **	-0,192 **	No obesity	0,760 ***	0,760 ***
Mother's illness	-0,121	-0,141	Lagged health status	0.311 ***	0.311 ***
Parental smoking	(Ref.: None)		Health status at 23	1.007 ***	1.007 ***
Father's smoking	0,072	0,021		1,007	1,007
Non response	-0,012	-0-025	Time dummies (Ref.: t=3)		
Mother's smoking	-0,076 *	-0.123 ***	t=1	0,579 ***	0,577 ***
Non response	-0,068	-0,083	t=2	0,341 ***	0,337 ***
Chronic condition	n at 16 (Ref.: None)	,	$V(H^{*})$	0,360	0,360
Yes	-0.012	-0,060	σ_ω	0,639	0,639
Non response	0,127	0.151	ρ#	0,390	0,390
Low birth weight	-0,079	-0,096	R ² (McKelvey and Zavoina)	0,180	0,180
Obesity at 16 (Ref	f.: Yes)				
No	-0,307 *	0,183			
Non response	-0,166	-0,219 *			

_	Over the full period					
	Baseliı	ne specification	Mediating specification			
Variables	Mean (%)	[95% Boot. Conf. Int]	Mean (%)	[95% Boot. Conf. Int]		
Sex	0,27	[0,24 ; 0,31]	0,65	[0,60;0,69]		
Age	15,12	[14,95;15,28]	15,09	[14,90; 15,28]		
Early life conditions	17,81	[16,23 ; 19,39]	23,75	[22,07;25,43]		
Social background	11,81	[10,97 ; 12,77]	15,85	[14,85 ; 16,85]		
Parent's health and lifestyles	3,44	[3,10;3,79]	4,67	[4,26; 5,08]		
Initial health	2,50	[2,11 ; 2,88]	3,23	[2,89; 3,58]		
Lifestyles	28,55	27,36;29,74]	22,16	[20,99;23,34]		
Education	4,92	[4,68;5,17]	5,29	[5,10;5,47]		
Health state-dependence	33,33	[32,78 ; 33,88]	33,06	[32,49;33,64]		

Conclusion ...

- Impressive contribution of lifestyles to health inequalities (28% baseline / 22% mediated)
- Health significantly influenced by average past lifestyles : average past lifestyles matter more
- Advantages of dynamic panel analysis :
 - to control a large part of individual unexplained heterogeneity
 - to evaluate the effect of health state dependence over time
- Early life conditions and education would shape other factors: mediated effects
 - When lifestyles and social factors are purged from the association with early life conditions and education :
 - reduction of their contribution to health inequalities
 - higher contribution of early life conditions to health inequalities
 - higher contribution of education to health inequalities