Education, Social Capital, and Health: An Empirical Framework

Don Kenkel
Cornell University & NBER
Goal

• Assess the feasibility of estimating the marginal effect of increases in the level of Education on Health and Social Capital
• Show how this can be done based on available data (esp. outside US, in OECD)
• Suggest a way to estimate a function or schedule showing the causal relationship between Health/ Social Capital and years/ level of education
 – Analogous to Figure 2, p.36 of the Cutler & Lleras-Muney, NBER working paper #12352 (on next slide)
Challenge #1: Identifying Causal Effects

• Research documents strong correlations:
 – Between years of education and Health outcomes and behaviors.
 – Between years of education and behaviors and outcomes related to Social Capital/ Civic & Social Engagement

• Correlation is NOT causation
Challenge #2: Non-linear Relationships

- Marginal effect of an additional year varies across level of education
- Standard assumption: diminishing marginal effect
 - With 3 years of formal schooling, marginal effect of 1 more year is to add a lot of Health, Social Capital
 - With 16 years of formal schooling, marginal effect smaller
Which challenge is more important?

- Econometric challenge of identifying causality attracts academic interest
- How the marginal effect varies might be more relevant for policy making
- Policy economics is harder than academic economics
Aside: terminology

• “Education” or “Schooling”
 – Usually we measure schooling, not education
 – Policies can↑schooling
• “Social Capital” or “Civic and Social Engagement”
 – I want a broad, umbrella term to conveniently summarize a lot of individual-level outcomes (CSE)
Canonical equation

- \(\text{Outcome}_i = \alpha + \beta \text{Schooling}_i + \gamma \text{X}_i + \varepsilon_i \)

 - \(\text{Outcome}_i \) = earnings, health, CSE outcome for individual \(i \)

 - \(\beta \) is the marginal effect of an additional year of schooling on the outcome (linear)

 - \(\text{X} \) are control variables

 - Unobservable influences captured by \(\varepsilon_i \)
Interpretation of β

- Shows causal effect of schooling on outcomes
 - In an earnings function, β is an estimate of the private rate of financial returns from investing in more schooling
 - In other functions, β estimates health or CSE returns from investing in more schooling
“Structural” interpretation of β

- What does β mean in a structural economic model of individual decision-making?
- What are the channels through which more schooling leads to higher earnings, better health, and more CSE?
 - “Channels” ↔ “Structural relationships”
“Structural” interpretation of \(\beta \), cont.

- “In many economic models of health, education is seen as enhancing a person’s efficiency as a producer of health—a suggestive phrase, but not one that is very explicit about the mechanisms involved.” (Deaton 2002)

- Allocative efficiency: schooling leads to different set of health inputs (e.g. less smoking, more exercise)
 - Schooling \(\rightarrow \) information \(\rightarrow \) health behaviors

- Parallel ideas for CSE?
Interpretation of β: Causal

- Identify causal link between schooling & outcome
- Do not necessarily identify channels (structural parameters)
Will β be a good estimate of the causal effect of schooling?

- Reverse causality: poor Health/ low CSE reduces educational attainment.
- Hard-to-observe “hidden third variable” or variables that are the true causes of both educational attainment and Health/ CSE (unobservable heterogeneity)
 - individual rate of time preference
 - attitudes related to self-efficacy
 - ability
Solutions

• Good data

• Fancy econometrics
 – This solution really relies on good data, too
The “best” data

• Randomized controlled trial
 – Assign some people to the control group that receives standard schooling
 – Assign others to a treatment group (or groups) that receive more schooling
 – Compare outcomes of treatments vs. controls

• In observational data, instead of random assignment people choose schooling levels
 – Same type of people may also choose to invest in more health, CSE
Good data

• Include controls for past health, CSE
 – Reduce bias in β due to reverse causality from past health/ past CSE to schooling

• Possibilities
 – Longitudinal data from childhood on (rare)
 – Longitudinal data on adults (may not solve problem)
 – Retrospective data on health problems in childhood
 – Family background measures proxy for differences in past health, CSE
Good data, cont.

• Include controls for hidden third variables
 – Some surveys try to measure risk, time preference, self-efficacy
 – Some surveys include ability measures (cognitive & noncognitive skills)

• Include proxies for hard-to-observe characteristics
 – Savings & consumer debt
 – Smoking status proxies for risk preferences
 – Is the “cure” (including proxies that are themselves endogenous) worse than disease?
Fancy Econometrics: IVs Based on Educational Reforms

- Use econometric method of Instrumental Variables (IV) to identify causal effects of education on Health/ CSE outcomes and behaviors

- IVs based on educational reforms: These provide a “natural” or “quasi-experiment” where people “treated” with the reform receive more education than untreated “control” group (so technique really relies on good data again)

- Method widely used in labor economics to identify earnings returns to education (Card, Econometrica 2001)
Key Ingredients for Empirical Framework

• Surveys that Measure Health/CSE Outcomes and Behaviors
 – Country-specific surveys
 • Examples: Danish panel survey, British Election Surveys
 – European Community Household Panel measures:
 • Physical and mental health outcomes
 • Social relations
 – WHO Multi-Country Survey Study measures:
 • Health Outcomes
 • Alcohol consumption
 • Depression

• Suitable IVs based on educational reforms available in a number of countries
<table>
<thead>
<tr>
<th>Country</th>
<th>Educational Policy Used as IV for Education</th>
<th>Reference IV Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>school disruptions due to Word War II</td>
<td>Ichino and Winter-Ebmer (2004)</td>
</tr>
<tr>
<td>Canada</td>
<td>variation in school-leaving ages</td>
<td>Oreopoulou (2006)</td>
</tr>
<tr>
<td></td>
<td>child labour laws</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>1958 reform: lowered educational barriers</td>
<td>Arendt (2005)</td>
</tr>
<tr>
<td></td>
<td>1975 reform: raised school-leaving age from 7 to 9 years, and removed distinction between two tracks during 8th to 10th forms</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>1968: educational reforms after student riots</td>
<td>Maurin and McNally (2008)</td>
</tr>
<tr>
<td></td>
<td>Zay reform (increased school-leaving age to 14) and Bethoin reform (increased leaving age to 16)</td>
<td>Alouy and Lequien (2008)</td>
</tr>
<tr>
<td>Country</td>
<td>Event/Change</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Germany</td>
<td>school disruptions due to Word War II</td>
<td>Ichino and Winter-Ebmer (2004)</td>
</tr>
<tr>
<td>Ireland</td>
<td>mid 1960s: introduction of free secondary education</td>
<td>Callan and Harmon (1999)</td>
</tr>
<tr>
<td></td>
<td>1972: school-leaving age increased from 14 to 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>education to enroll in college, regardless of curriculum chose in secondary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>school</td>
<td></td>
</tr>
<tr>
<td>the Netherlands</td>
<td>1982: duration of university education decreased from five to four years</td>
<td>Webbink (2007)</td>
</tr>
<tr>
<td>Country</td>
<td>Event</td>
<td>Years Increased</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Norway</td>
<td>1960s: compulsory education increased</td>
<td>seven to nine years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>1956: compulsory education increased</td>
<td>three to four years</td>
</tr>
<tr>
<td></td>
<td>1964: compulsory education increased</td>
<td>four to six years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>1960s compulsory education increased</td>
<td>seven or eight to nine years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td>1968: compulsory education increased</td>
<td>six to nine years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>large expansion in junior high school</td>
<td></td>
</tr>
<tr>
<td></td>
<td>construction (intensity varied across</td>
<td></td>
</tr>
<tr>
<td></td>
<td>regions of Taiwan)</td>
<td></td>
</tr>
<tr>
<td>United</td>
<td>1947: minimum school leaving age</td>
<td>14 to 15</td>
</tr>
<tr>
<td>Kingdom</td>
<td>1973: school reform</td>
<td></td>
</tr>
</tbody>
</table>
Example: “When Compulsory Schooling Laws Really Matter”

• Oreopoulos (2006) studies compulsory schooling reforms in Britain & Northern Ireland

• He estimates that the average increase in earnings in Northern Ireland from raising the school-leaving age from 14 to 15 is 13.5% - 20%
Figure 2. Fraction Left Full-Time Education by Year Aged 14 and 15 (Northern Ireland)

Note: The lower line shows the proportion of Northern Irish adults aged 32 to 64 from the 1985 to 1998 General Household Surveys who report leaving full-time education at or before age 14 from 1935 to 1965. The upper line shows the same, but for age 15. The minimum school-leaving age in Northern Ireland changed in 1957 from 14 to 15.
Local Averages and Parametric Fit

Figure 7. Average Annual Log Earnings by Year Aged 14
(Northern Ireland)

Note: Local averages are plotted for Northern Irish adults aged 32 to 64 from the 1985 to 1998 General Household Surveys. The curved line shows the predicted fit from regressing average log annual earnings on a birth cohort quartic polynomial and an indicator for the school-leaving age faced at age 14. The school-leaving age increased from 14 to 15 in 1957, indicated by the vertical line. U.K. pounds using the U.K. retail price index.
Extensions

• Comparison of IV and OLS estimates
 – Bias $\rightarrow \beta_{\text{OLS}} > \beta_{\text{IV}}$
 – Often find $\rightarrow \beta_{\text{OLS}} < \beta_{\text{IV}}$
• Non-linear functional form
• Heterogeneous treatment effects (LATEs)
• Cross-country comparisons
• General equilibrium effects
Non-linearities

• Non-linear relationship:
 \[\text{Outcome} = \alpha + \beta_1 Y_1 + \beta_2 Y_2 + \ldots + \beta_{18} Y_{18} + \gamma X + \epsilon \]

 \(Y_1\) indicates 1 year of schooling, etc.

• More flexible functional forms demand more from the data
 – May lack sample size for precision
Non-linearities, cont.

• Using IV approach to estimate non-linear relationship is at cutting edge
 – Moffitt (2007) NBER working paper 13534
• Need IVs that identify different margins of education
Heterogeneous Treatment Effects

- Outcome_i = \alpha + \beta_i \text{ Education}_i + \gamma X_i + \varepsilon_i

- Each individual i faces a different marginal effect \beta_i
 - Focus on distribution of treatment effects \beta_i, for example the average treatment effect (ATE)
IV estimates a LATE

• IV estimate is a weighted average of the causal effect of a year of schooling within a subgroup
 – Weights depend on how much the subgroup is affected by the IV

• Equally valid IVs relying on different subgroups generate different results corresponding to different LATEs
Concluding Comments

• "In my view one of the most important empirical developments in the past two decades has been the application of instrumental variables techniques to the relationship between schooling and earnings. There are many fewer examples of the application of this technique to the relationship between schooling and nonmarket outcomes. Such research deserves high priority on an agenda for future research" (Grossman, Handbook of the Economics of Education)
Concluding Comments, cont.

• “The perils of invalid and weak instruments open all instrumental variable estimates to skepticism. Although instrumental variable estimation can be a powerful tool for avoiding the biases that ordinary least squares estimation suffers....applying instrumental variables persuasively requires imagination, diligence, and sophistication.” (Murray 2006, J. Econ. Persp.)

• “In many cases the IV estimates are relatively imprecise, and none of the empirical strategies is based on true randomization. Thus, no individual study is likely to be decisive....” (Card 2001)
The sequel: estimating causal effects of social capital

- Health (or other outcome) = $\alpha + \beta \text{ SC} + \ldots$

- Community-level Social Capital
 - Exogenous shocks/ natural experiments

- Individual-level Social Capital
 - Suitable IVs less obvious